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Abstract

Recent empirical investigations have found a decrease over time in the estimated �rst order
autocorrelation of stock index returns. It has been suggested that this change in autocorrelation
is caused by the introduction of new �nancial markets, such as options and futures on the
index. Froot and Perold (1990).

This paper carries out formal hypothesis tests for changes in index autocorrelation, and
evaluates the relationship between the estimates of autoregressive coe�cients with those of
other second moments. The methods used are tests for structural changes in time series GMM
estimation. The small sample characteristics of the test statistics are investigated by Monte
Carlo, and the tests are carried out on US stock market data for the period 1976 to 1989.

The results show that if we impose a constant conditional variance, we can reject a null of no
change in autoregressive coe�cients of the S&P 500 index. If we allow for a changing conditional
variance, we no longer reject a null of no change. Hence, correcting for changes in the variance,
we can not claim there has been a change in the autoregressive relationship. To explore the
causes of these results, we also looked at cross-correlations between di�erent�sized indices, and
found that there has been a change in the lead-lag relationship between the portfolio of largest
stocks and other size-based portfolios.
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1 Introduction

A number of authors have shown evidence of changes in the time series properties of S&P 500 index

returns at the time of introduction of derivative securities based on the index, such as options and

futures. Damodaran and Subrahmanyam (1992) gives an overview of this literature. As examples,

Harris (1989) shows evidence of changes in the conditional variance of index returns, and Froot

and Perold (1990) show evidence of changes in both the variance and the autocorrelation of index

returns. Similarly, there has been a number of investigations of introduction of options on individual

stocks and their e�ects on properties of stock returns.1 These studies found evidence of changes in

the stock volatility.

In this paper we concentrate on changes in autoregressions. We carry out explicit statistical

tests for whether changes have occurred in autoregressive relationships in the time series of index

returns. Such formal inference are lacking in existing work. By using the Generalised Method of

Moments (GMM), the tests allow for dependency and heteroscedasticity in the time series.

Using daily returns on the S&P 500, we show that if we assume a constant conditional variance,

we reject the null of a constant autoregressive relationship. However, if we allow for changes in con-

ditional variances, we no longer reject this null. Hence, when we correct for nonconstant conditional

variance, we can not reject a null of constant autoregressive relationship in the index throughout

the period. As a check of this result we looked at a test statistic that allows us to estimate the

time at which an event occurred. We found that there is no evidence of any changes at the time of

introduction of new instruments.

As shown by a number of authors, a major source of index autocorrelation is crosscorrelations

between the stocks that constitute the index. It is therefore of interest to see if we can �nd any

evidence of structural change in these crosscorrelation, and therefore the observed index changes.

By using data on size-sorted portfolios, we �nd that there is strong evidence for a change in the

crosscorrelations between the large sized portfolio and other size-based portfolios.

In the �rst section we discuss and motivate the problem. Section 3 describes the statistical tests

for structural change. Section 4 shows the results from applying the tests to stock market data, and

section 5 investigates the small sample properties of the test statistics using Monte Carlo. Section 6

concludes.

2 Motivation.

Recent empirical investigations have shown evidence of positive �rst order autocorrelation in returns

on broad based stock indices. See for example Lo and MacKinlay (1988). Froot and Perold (1990)

show that the measured index autocorrelation has declined over time. Consider �gures 1 and 2.

They graph yearly estimates of �rst-order autocorrelation of daily and weekly returns on the S&P

1See for example Conrad (1989) and Skinner (1989).
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500 stock index and an equally weighted (EW) index of NYSE stocks. For daily returns the sample

estimates of autocorrelation has declined.

Figure 1 Yearly estimates of the autocorrelation of daily index returns. 1970 to 1990. Equally
weighted index and S&P500 index.
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Most of the autocorrelation in index returns is attributed to cross-correlations across stocks.

These cross-correlations are shown in e.g. Lo and MacKinlay (1990) and Conrad, Gultekin, and

Kaul (1991) to be mainly caused by the stocks of large �rms leading the stocks of smaller �rms.

Suppose some of this behaviour is caused by changes in marketwide `factors,' the e�ects of which

are re�ected faster in prices of larger stocks, which are more heavily traded. If we now introduce a

futures contract on a stock index consisting of a large crossection of the stocks on the market, infor-

mation about marketwide factors will be re�ected in prices of this contract. Since the futures price

is observable by the whole market, the information about marketwide factors can be disseminated

faster into prices of the stocks that constitute the index. Froot and Perold (1990) and Subrah-

manyam (1991) are examples of models where introduction of new markets have such informational

e�ects. Market participants can also �hedge� market risk at a lower cost, which may change the

arbitrage relationships in the market. From this it follows that the the lead-lag relationships in the

market may change, which can be re�ected in the autocorrelation of index returns.

The issue of the e�ects of introduction of new �nancial instruments is still very much discussed

in the popular press, in particular around big swings in stock indices, as seen latest on 15 nov 1991.2

The question of possible e�ects of introduction of derivatives is therefore also one of considerable

2See for example �Coming to terms with futures,� The Economist, 23 nov 1991.
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Figure 2 Yearly estimates of the autocorrelation of weekly index returns. 1970 to 1989. Equally
weighted index and S&P 500 index.
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public interest.

While �gures 1 and 2 indicate a decline in sample estimates of autocorrelation, they do not

constitute a formal test. The behaviour observed in the graphs may still be generated by a process

with constant autoregressive coe�cient. One way this could happen is if the variance of the process

increased. The intuition for this follows from the formula for autocorrelation:

ρ(r, r−1) =
cov(r, r−1)
σ(r)σ(r−1)

The sample autocorrelation can decrease either if cov(r, r−1) decreases or if σ(r) increases. In this

paper we ask formally whether the observed decline in sample autocorrelations allow us to conclude

that the �real� autoregressive coe�cient has changed. We formulate this question as a hypothesis

test, with a null hypothesis of no parameter change.

To further emphasize the need for formal testing, let us point out the uncertainty in yearly

estimates of autocorrelation. This is illustrated in �gure 3. The �gure shows yearly point estimates

of autocorrelation of daily S&P 500 returns, plus and minus 2 standard deviations. As the �gure

shows, the con�dence intervals for the autoregressive coe�cient are large.

Possible changes due to the introduction of new markets do not not translate readily into state-

ments about the time series behaviour of returns. Absent a formal model of trading, the parameters

of which could be estimated and tested for constancy through time, tests measuring autoregressive
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Figure 3 Yearly estimates of the autocorrelation of daily index returns. 1970 to 1990. S&P500
index. The �gure also shows +/- 2 standard deviations of the point estimate.
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relationships in the context of simple processes seem a reasonable �rst step to a more complicated

test. In this context we also note that the tests carried out in this paper makes no claims about

causality. Any observed changes in the time series could be caused by other exogenous events than

the introduction of new markets.

3 Test Statistics.

In this section we describe the test statistics. The tests are cast in the framework of Generalised

Method of Moments (GMM) estimation Hansen (1982). In two recent papers, Andrews and Fair

(1988) and Ghysels and Hall (1990) propose a number of tests for regime changes in structural

parameters of models estimated using GMM. In each test, the time of regime change has to be

known to the econometrician. The tests involve splitting the data into two subsamples and testing

for di�erences in parameter estimates across the two samples.

We also consider a more recently developed statistic Andrews (1990) that allows the time of

parameter change to be unknown.
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3.1 Estimating the time series parameters.

First consider estimation of the autoregressive parameters. For illustrative purposes, we look at the

case where index returns rt follow a linear process with constant conditional variance:

rt = µ + αrt−1 + εt, (1)

with α and µ constant, and εt a noise term satisfying

E[εt|It−1] = 0 ∀ t, (2)

E[ε2
t |It−1] = σ2 < ∞ ∀ t. (3)

Here It−1 is the information set at time t−1. These are strong assumptions on stock index returns,

in particular the assumption of constant conditional variance. It can be viewed as a �rst try at the

problem, and we relax it in later sections of the paper, where we allow the conditional variance to

change.

If we made further distributional assumptions on εt, the model could be estimated directly by

Maximum Likelihood. For example, if the εt are iid normally distributed, this reduces to a OLS

linear autoregression. The tests would then reduce to standard Chow tests. However, we choose

to not make any distributional assumptions, and instead estimate the parameters directly from the

moment conditions imposed by the model. This allows more �exibility in the possible distributions

of εt. The most general assumptions where GMM is still consistent are the mixing conditions of

Gallant and White (1988). In all the cases we look at we assume these hold. The cost of using GMM

is that it is less e�cient than ML in cases where the distribution of the error is known. Thus, use of

GMM relative to ML will make the tests more conservative in the sense of less ability to reject the

null hypothesis. This is caused by the larger uncertainty in the estimates. We can justify the use of

GMM by empirical evidence, going back to classical work of Mandelbrot (1963) and Fama (1965),

that high frequency stock returns, such as daily returns, deviate from a normal distribution. It is

also known that the Chow test is nonrobust to deviations from iid disturbances Kramer (1989).

Another advantage of using GMM is that the test of overidentifying restrictions gives a useful

speci�cation test of the model formulation.

Let us now show how we would estimate the parameters of this process with GMM. We want

to estimate µ, α and σ. The model imposes the orthogonality conditions

E[rt − (µ + αrt−1)] = 0, (4)

E[σ2 − (rt − (µ + αrt−1))2] = 0. (5)

To generate additional moment conditions, we assume that elements Zt−1 in the information set
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It−1 at time t− 1 are orthogonal to the error εt. This gives us further moment conditions:

E[(rt − (µ + αrt−1))Zt−1] = 0, (6)

E[(σ2 − (rt − (µ + αrt−1))2)Zt−1] = 0. (7)

We will consider two instruments: (1) Past index returns (Zt−1 = rt−1), and (2) Past forecast errors

(Zt−1 = εt−1). The GMM estimator minimises a quadratic form in the sample counterparts of

equations (4) to (7) above, using a weighting matrix in the quadratic form. Hansen (1982) show

that the optimal weighting matrix is an estimate of S−1, where S is the variance-covariance matrix

of the moment conditions.

3.2 Tests for structural change.

We now consider tests of structural change. The discussion is mainly descriptive, for the explicit

de�nitions of the test statistics we refer to Appendix B and the original papers.

Let the GMM moment conditions be summarised by

E[f(xt, θ)] = 0,

where f(xt, θ) is a vector of moment conditions, θ is the parameter vector, and xt ∈ X is the data.

We �rst look at tests where there is a structural change at a known time. We consider three

tests due to Andrews and Fair (1988). The data is split into two subsamples

X1 = {xt}T1
t=1

X2 = {xt}T
t=T1+1

The possible regime change occurs between periods T1 and T1 + 1. The point T1 at which the

sample is split is assumed known to the econometrician. The matrix X1 holds data from the period

before the regime change, and X2 the data from the period after the regime change. Similarly,

the parameters θ to be estimated are split into θ = (θ1, θ2, θ3), where θ3 are parameters that stay

unchanged over the whole period, and θ1 and θ2 are the parameters of interest before and after the

regime change, respectively. The moment conditions are then �stacked� the following way:

f(xt, θ) =



[
f(xt, θ1, θ3)

0

]
for xt ∈ X1

[
0

f(xt, θ2, θ3)

]
for xt ∈ X2
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The null hypothesis of no regime change is formulated as

H0 : θ1 = θ2

which is to be tested against an alternative hypothesis:

HA : θ1 6= θ2

Andrews and Fair discusses three di�erent tests; a Wald-test W , a Lagrange multiplier-like test

LM and a likelihood ratio-like test LR. To calculate the Wald statistic W , the model is estimated

without imposing the hypothesis θ1 = θ2. Given this estimate, form a quadratic form where the

di�erence θ̂1−θ̂2 is used. Under the null, this di�erence should be zero. Under alternative hypotheses

the di�erence is nonzero. A large value of the test statistic shows the estimated di�erence θ̂1 − θ̂2

is large, and the null hypothesis is rejected. The `Lagrange multiplier' statistic LM is found by

estimating the model imposing the null hypothesis, and testing the �t of the resulting estimate. The

`Likelihood ratio' statistic LR estimates the model in both restricted and unrestricted form, and

compares the di�erence in �t of the two estimates. The statistics will, under the null hypothesis, all

have asymptotic chi�square distributions with degrees of freedom equal to the number of restricted

parameters.

We also consider a statistic GH proposed by Ghysels and Hall (1990). Their method is to

substiture the estimated parameters from one subperiod into the moment conditions of the other

subperiod. If the null hypothesis holds, this will be a good �t. Under alternative hypotheses, the

�t will be less good, and will make the test statistic large. Under the null hypothesis, GH has an

asymptotic chi-square distribution with degrees of freedom equal to the number of orthogonality

conditions in f(·). We consider two versions of the GH statistic. GH1 uses only part of the data to

estimate the covariance matrix, and GH2 uses all the data. Under the null the covariance matrix is

constant, so estimating it using all the data is still consistent, and will result in a better estimate

of the covariance matrix.

To illustrate the di�erence between the Ghysels and Hall statistic and the Andrews and Fair

statistics, consider a change of conditional variance in the return process discussed above. The

parameter σ only appears in two of the four moment conditions, but the Ghysels and Hall statistic

uses all four moment conditions in the test. The Andrews and Fair statistics will only make use of the

moment conditions in which σ appears. Since the Ghysels and Hall statistic makes no assumptions

about the form of the structural break, we expect it to have low power against a speci�ed alternative,

but it is also robust to di�erent forms of structural change.

Finally, in a recent paper, Andrews (1990) discusses tests in which the time of the possible

structural change is unknown to the econometrician. It is assumed that there is only one possible

regime change, but there is uncertainty as to when it occurred, as well as whether it occurred at all.
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Andrews develops Wald, LM and LR-like test statistics for this situation. Essentially, the statistics

will take the supremum across time of the statistics for the corresponding tests with a known time

of structural change. The statistics will be distributed as suprema of chi-square variables. The

distribution of the statistics have no obvious closed form expression, so Andrews uses Monte-Carlo

methods to �nd rejection levels for the statistics. In our work we use his critical values to evaluate

the results. In the case where the null is rejected, the method also gives an estimate of the time of

structural change.

4 Estimation Results.

In this section we look at results from applying the tests described above to stock index returns. The

�rst subsection considers tests for two broad based stock indices. The second investigate changes

in the cross�correlations of stocks.

4.1 Market indices.

We look at two market-wide indices, the equally weighted (EW) index from the CRSP data base and

the S&P 500 index. The tests are done using both weekly and daily returns. Table 1 shows some

descriptive statistics for the return series. Only the �rst-order autocorrelation is of a signi�cant

magnitude.

For the tests with a �xed time of parameter change, we have to settle on a breakpoint. We are

looking for possible e�ects of new markets. As an indicator of when these e�ects occurred we have

chosen volume numbers on the stock market index futures/options markets. The time at which

these volumes became substantial should be a reasonable time to check for changes in the time

series. These markets were introduced in 1982, and they had a large volume within a year, so we

have chosen to consider the period 1976 to 1989, with a possible breakpoint at 1/1/83.

We will consider two alternative assumptions on the return process. The �rst is the formulation

discussed in the previous section, where the conditional variance is assumed constant. In the second

formulation we explicitly parameterise the conditional variance using an ARCH type process, and

do the tests for structural change with this process.

To summarise, the results show that if the conditional variance is assumed constant, we reject

a null of no change in the autoregressive parameter for daily S&P 500 returns, but in all cases

where the conditional variance is allowed to change, we do not reject a null of no change in the

autoregressive parameter.

Let us �rst look at estimating the process described in section 3, where we assumed a constant

conditional variance. The returns are assumed to satisfy

µ + αrt−1 + εt
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Table 1 Descriptive statistics for the return series. (OLS) Average returns, standard deviations,
and the �rst through fourth order autocorrelations. Returns in percent. Equally weighted index
and S&P 500 index. 1976�1989

Weekly Returns
Auto Correlation

Index Period r̄ × 100 σ(r)× 100 ρ1 ρ2 ρ3 ρ4

EW 1976�89 0.462 2.193 0.228 0.080 0.041 0.059
1976�82 0.553 2.302 0.205 0.152 0.071 0.094
1983�89 0.371 2.073 0.249 0.001 0.002 0.011

S&P500 1976�89 0.217 2.121 0.041 0.001 -0.056 -0.005
1976�82 0.144 2.094 0.046 0.001 -0.053 0.029
1983�89 0.291 2.145 0.027 0.006 -0.064 -0.043

Daily Returns
Auto Correlation

Index Period r̄ × 100 σ(r)× 100 ρ1 ρ2 ρ3 ρ4

EW 1976�89 0.092 0.790 0.274 0.053 0.022 0.052
1976�82 0.110 0.764 0.326 0.098 0.079 0.049
1983�89 0.074 0.815 0.227 0.011 -0.029 0.052

S&P500 1976�89 0.044 0.985 0.067 -0.037 -0.027 -0.046
1976�82 0.029 0.848 0.129 0.024 0.013 -0.027
1983�89 0.059 1.106 0.030 -0.073 -0.050 -0.059

with

E[εt|It−1] = 0 ∀ t

E[ε2
t |It−1] = σ2

We consider �ve tests. In the �rst three, the null hypothesis is that all three parameters µ, α and

σ stay constant throughout the period. This null is tested against the following three alternative

hypotheses:

1. The autoregressive parameter α changes, the other parameters µ and σ2 stay constant.

2. Both the autoregressive parameter α and the mean µ changes, σ2 stays constant.

3. All parameters µ, α and σ2 change.

For the �rst three tests, the null involves a constant conditional variance over the whole period.

For the �nal two tests we allow for changes in some of the parameters while we test for change

in the autoregressive coe�cient. The fourth test lets the null allow for a one-time change in the

conditional variance. We are testing whether we can detect a change in the autoregressive coe�cient

when we let the conditional variance change once. In the �fth test we allow for a change in the

mean parameter µ.
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4. H0: µ and α are constant, σ is allowed to change once.

HA: µ is constant, α and σ change.

5. H0: µ is allowed to change once, α and σ are constant.

HA: µ and α change, σ is constant,

Table 2 below lists the results using daily and weekly returns on the market indices and S&P 500.

The table lists the values of the LR statistic. The choice of this statistic is justi�ed by Monte

Carlo studies of the small sample properties of the various test statistics, which showed the LR

statistic to have the best properties. Results for the other test statistics and additional data on the

parameter estimates are listed in Appendix A. These tables also report speci�cation tests using the

overidentifying restrictions. These show that we do not reject the model speci�cation.

Table 2 Hypothesis test of parameter constancy using the LR statistic. 1976-1989. Change point
1/1/1983. Daily and weekly returns. Numbers in parenthesis are probability values. 1: Test whether
α is constant. 2: Joint test of whether α and µ are constant. 3: Joint test of whether α, µ and σ
are constant. 4: Test for change in α, allowing for change in the variance σ. 5: Test for change in
α, allowing for change in the mean µ.

LR

EW 1 2.71 (0.100)
2 2.72 (0.257)
3 3.01 (0.390)
4 2.76 (0.097)
5 2.24 (0.135)

S&P 1 6.30 (0.012)
2 9.78 (0.008)
3 15.12 (0.002)
4 0.73 (0.392)
5 8.74 (0.003)

Daily returns

LR

EW 1 0.00 (0.949)
2 0.53 (0.769)
3 1.09 (0.780)
4 0.05 (0.829)
5 0.11 (0.742)

S&P 1 0.67 (0.412)
2 1.90 (0.387)
3 1.98 (0.577)
4 0.71 (0.400)
5 1.23 (0.267)

Weekly returns

In the case of daily returns we do not reject a null of constant parameters on the EW index. For

daily returns on S&P 500, we reject the null of parameter constancy at the 5% level for the �rst three

hypotheses, but not for the fourth. In other words, as long as the conditional variance is assumed

constant over the whole period, we reject, but if the conditional variance is allowed to change once,

we no longer reject the null of constant autoregressive parameters. For weekly returns we can not

reject the null of no change in the autoregressive relationship using any of the test statistics.

Since the previous results showed a sensitivity to the variance process, we next look at doing

similar test assuming the variance follows a simple ARCH speci�cation of Engle (1982). A number of

authors have found evidence of ARCH e�ects in stock returns. For a recent summary of applications
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of ARCH modelling in �nance, we refer to Bollerslev, Chou, and Kroner (1992). We formulate the

estimation of the ARCH errors in a GMM framework, and test for parameter changes. A clear

exposition of estimation of ARCH models by GMM can be found in Rich, Raymond, and Butler

(1991). We view the ARCH parameterisation of conditional variance as a parsimonious way of

introducing time varying conditional variance. If we can not reject the null of no change in the

autoregressive parameter when we allow for a time�varying conditional variance, we may have more

con�dence that the changes in the sample autocorrelation coe�cient are mainly attributable to

changes in the conditional variance.

We use the ARCH framework in the simplest possible way. Assume mean returns follow

rt = µ + αrt−1 + εt

where

E[εt|It−1] = 0

E[ε2
t |It−1] = ht

and the conditional variance ht follows

ht = η0 + η1ε
2
t−1 with η0 > 0, and η1 < 1.

To estimate the model, we use the moment conditions

E[rt − µ− αrt−1|It−1] = 0

E[ε2
t − η0 − η1ε

2
t−1|It−1] = 0

We test a null hypothesis of no parameter change against an alternative

HA: The AR coe�cient α changes, the other parameters stay constant.

Table 3 Hypothesis test of parameter constancy using the LR statistic. 1976-1989. Change point
1/1/1983. Daily and weekly returns. Numbers in parenthesis are probability values. 1: Test whether
α is constant.

LR

EW 1 0.57 (0.449)

S&P 1 1.98 (0.159)

Daily returns

LR

EW 1 0.17 (0.684)

S&P 1 0.12 (0.727)

Weekly returns
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The results for daily returns in table 3 show that we are not able to reject a null of no parameter

change for either of the indices. The parameter estimates are listed in Appendix A. A speci�cation

test using overidentifying restrictions does not reject the model formulation. Hence, we can not

reject the null of a constant autocorrelation of daily S&P 500 returns when we parameterise the

variance process using the ARCH model.

We justi�ed our choice of the time to test for change in the time series properties from the

introduction of options. This assumes that this is the only signi�cant event during the period in

question. However, there has been a number of changes to the stock markets during this period. To

gauge the importance of the introduction of new instruments versus other possible events, we next

consider tests where the time of regime change is unknown. The idea is that we are not quite sure

of when the regime change occurred, but we assume there is only one possible time of occurance.

We look at the S&P 500 index.

Table 4 Hypothesis test of parameter constancy. S&P 500 index. Unknown time of parameter
change. Period 1976 to 1989. See Section 3 for a description of the di�erent tests. See table 12 for
the critical probability values. Starred values are signi�cant at the 5% level. Values in parenthesis
are estimated dates of parameter change when we reject the null.

supW (π) supLM(π) supLR(π)
1 10.87∗ 26.35∗ 25.74∗

(781027) (781027) (781020)

2 12.90∗ 32.13∗ 32.31∗

(781027) (781027) (781027)

3 61.29∗ 52.79∗ 74.54∗

(791024) (791106) (781020)

4 4.28 6.80 5.82

1 3.28 6.81 5.93
2 4.21 7.26 6.25

1 53.06∗ 18.15∗ 23.85∗

(851231) (781027) (781020)

Daily Returns

supW (π) supLM(π) supLR(π)
1 6.60 2.36 3.38
2 15.90∗ 6.23 6.27

(780216)

3 25.26∗ 16.61∗ 24.56∗

(780302) (790913) (780309)

4 3.93 3.51 3.88

1 4.74 5.16 5.47
2 13.73∗ 7.72 9.07

(780216)

1 8.87 4.64 6.29

Weekly returns.

The results are listed in table 4. For daily returns the tests with constant conditional variance

reject the null of no parameter change. Note however that the estimated dates are in the 1978�79

period, not around the time of introduction of the options. The tests with an ARCH variance (the

last) also strongly reject the null of no parameter change, with the estimated breakpoint in 1978.

For weekly returns, we also reject the null of parameter constancy in some cases, with the estimated

time of parameter change in the 1978�79 period.

The results cast some doubt on whether we can claim that introduction of options on the index

has been the source of observed changes in index time series behaviour. Of other important events

in the �nancial markets we can mention the abandoning of �xed commissions in 1975, and the
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Federal Reserve's change of operating procedure in 1979. If there truly was a change in the 1978�79

period, these events could be part of the explanation.

On a cautionary note, we should mention that the statistical properties of these tests are still

relatively untested. We give some Monte Carlo evidence on these properties in the next section,

and refer to the discussion there.

4.2 Crosscorrelations in size-based indices.

In this section we discuss one obvious way to extend the analysis of the previous sections. One of the

well-known stylised facts in this area is that much of the index autocorrelation is related to cross-

correlations across stocks. It is therefore natural to test for structural change in cross-correlations

as well as the (own) autocorrelations. This may give us more power to detect any changes that have

occurred. We therefore look at the cross-correlations of daily returns on 5 size-based indices.3

Table 5 lists (OLS) estimates of lagged cross-correlations of daily returns of 5 size-based portfolios

for the subperiods 1976�82 and 1983�90. The pattern is well known. Portfolios of smaller stocks

are correlated with past returns for other portfolios, and the portfolio of large stocks has low

correlation with past returns of other portfolios. If we look across the two periods, the estimated

cross-correlations have declined.

Table 5 Descriptive statistics, lagged cross-correlations. Size-based, equally weighted indices of
NYSE stocks. Portfolio 1 is the portfolio of smallest �rms. Daily returns. 1976�82 and 1983�89.

Rt−1

Portfolio 1 2 3 4 5

small 0.43 0.43 0.42 0.41 0.37
Rt 2 0.31 0.34 0.35 0.36 0.35

3 0.24 0.27 0.30 0.32 0.32
4 0.20 0.24 0.27 0.29 0.31

large 0.11 0.15 0.17 0.20 0.23

1976�82

Rt−1

Portfolio 1 2 3 4 5

small 0.27 0.29 0.32 0.34 0.36
Rt 2 0.21 0.23 0.27 0.31 0.35

3 0.16 0.19 0.23 0.28 0.33
4 0.12 0.16 0.20 0.24 0.29

large -0.01 0.03 0.05 0.09 0.14

1983�89

We want to do formal testing of whether the declines in estimated cross�autocorrelations re�ect

a change in the linear predictability of returns. For simplicity, we use similar assumptions to the

autoregressive case, and look at estimating the predictability of the return on index i from the

return of index j in the previous period:

Rt,i = µ + αRt−1,j + εt,

allowing for di�erent assumptions about which parameters change and the distribution of the error

term. Note that we only look at the two indices i and j in isolation, we do not estimate a joint

3The results for 10 size-based portfolios are qualitatively similar.
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system.4

In this case, we consider four di�erent hypotheses. In the �rst three tests we assume a constant

conditional variance, E[ε2
t |It−1] = σ2, and in the fourth we let the variance follow a simple ARCH

process, E[ε2
t |It−1] = ht, where ht = η0 + η1ε

2
t−1.

The hypotheses we test are the following:

1. H0: All parameters µ, α and σ constant.

HA: α changes, µ and σ constant.

2. H0: The conditional variance σ2 allowed to change once, µ and α constant.

HA: α and σ changes, µ constant.

3. H0: The mean parameter µ changes once, α and σ constant.

HA: µ and α changes, σ constant.

4. H0: All parameters µ, α, η0 and η1 are constant.

HA: α changes, µ, η0 and η1 constant.

The results from these tests are listed in table 6. All the four tests show similar results. The

important changes in predictability are related to the large-sized portfolio. The ability of returns

of the large sized portfolio to predict future returns of the smaller�sized portfolios has gone down,

as seen by the rejections in the last columns. Also, the returns of the large�sized portfolio are less

correlated with past returns of the other portfolios, as seen by the rejections in the last row of the

tables. Note that these results are robust to assumptions about the conditional variance. Hence,

4Theoretically, the tests could be made more e�cient by estimating all the parameters simultaneously, using the
GMM equivalent of �Seemingly Unrelated� Regressions. Suppose we have p portfolios. De�ne

rt = (r1,t, · · · , rp,t)
′

a = (µ1, · · · , µp)′

B =


α1 0 · · · 0
0 α2 · · · 0

...
0 · · · 0 αp


et = (ε1,t, · · · , εp,t)

′

The parameters a and B could be estimated simultaneously using the system

rt = a + Brt−1 + et

The e�ciency would be increased if elements of the error term et are correlated, and this is taken into account in
the estimation of the variance-covariance matrix. This framework would also allow for testing for change in only some
of the parameters. However, when implementing this approach, we found that the numerical optimisation routine
could not �nd a optimum with any degree of con�dence, the surface is extremely �at given the number of parameters
we are trying to �nd. We therefore do not report any results using this approach.
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Table 6 Results of hypothesis tests of changes in cross-autocorrelation for index returns. Daily
returns. 5 size based indices of NYSE stocks. Index 1 is the index of smallest stocks. Numbers are
values of the LR statistic, which have a χ2 distribution. Numbers in parenthesis are probability
values.

Rt−1

1 2 3 4 5

Rt 1 3.70 3.18 3.10 6.10 12.98

(0.054) (0.074) (0.078) (0.014) (0.000)
2 3.13 2.35 2.08 3.97 8.12

(0.077) (0.125) (0.149) (0.046) (0.004)
3 2.08 1.33 1.36 3.18 8.22

(0.149) (0.250) (0.243) (0.075) (0.004)
4 3.26 1.52 0.70 1.53 5.03

(0.071) (0.217) (0.403) (0.217) (0.025)
5 10.81 6.95 4.76 5.50 6.61

(0.001) (0.008) (0.029) (0.019) (0.010)

Test 1.

Rt−1

1 2 3 4 5

Rt 1 3.54 2.76 2.97 5.94 13.29

(0.060) (0.097) (0.085) (0.015) (0.000)
2 3.28 2.56 2.31 4.25 8.80

(0.070) (0.109) (0.128) (0.039) (0.003)
3 2.00 1.57 1.59 3.17 7.54

(0.157) (0.211) (0.208) (0.075) (0.006)
4 0.24 0.24 0.35 1.51 5.23

(0.626) (0.621) (0.555) (0.218) (0.022)
5 0.95 1.68 1.68 2.52 3.96

(0.329) (0.195) (0.195) (0.112) (0.047)

Test 2.

Rt−1

1 2 3 4 5

Rt 1 1.57 2.06 1.71 3.31 7.35

(0.210) (0.151) (0.191) (0.069) (0.007)
2 1.16 0.96 0.61 1.18 2.78

(0.281) (0.328) (0.434) (0.278) (0.095)
3 1.37 0.81 0.51 1.19 3.73

(0.242) (0.369) (0.474) (0.274) (0.053)
4 4.91 2.05 0.84 1.40 4.29

(0.027) (0.152) (0.358) (0.237) (0.038)
5 18.89 8.77 5.58 6.27 7.24

(0.000) (0.003) (0.018) (0.012) (0.007)

Test 3.

Rt−1

1 2 3 4 5

Rt 1 5.40 3.78 3.64 5.89 13.45

(0.020) (0.052) (0.056) (0.015) (0.000)
2 3.27 0.84 0.24 0.53 2.61

(0.071) (0.359) (0.627) (0.465) (0.106)
3 2.60 0.66 0.08 0.16 2.08

(0.107) (0.417) (0.775) (0.690) (0.149)
4 2.37 1.28 0.22 0.43 2.45

(0.123) (0.257) (0.641) (0.514) (0.118)
5 7.90 10.57 7.42 6.79 6.74

(0.005) (0.001) (0.006) (0.009) (0.009)

Test 4.

we conclude that there has been a change in the time series properties of the returns, and that this

is related to the large sized portfolio.

5 Small sample properties of the test statistics.

One possible problem with the statistics we have used is the fact that they all rely on asymptotic

theory. It is therefore valuable to have some information about their properties in small samples.

To this end, we report some Monte Carlo investigations.
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5.1 Statistics with a known time of structural change.

We simulate return series following rt = µ+α1rt−1 +εt for t = 1, · · · , T1 and rt = µ+α2rt−1 +εt for

t = T1 + 1, · · · , T , with εt ∼ N(0, σ2). The normality assumption is mainly for convenience, similar

simulations have been done with a number of non-normal error assumptions, and the conclusions

are not sensitive to the error distribution. We therefore report only the results using a normal error.

These parameters are used to generate series of T = 200 return observations, with a possible

breakpoint at T1 = 100. We use a small number of observations in order to highlight the di�erences

between the statistics. It can be viewed as a `worst case' scenario, and the di�erences between

statistics will be smaller for larger sample sizes. The breakpoint was (arbitrarily) picked as the

midpoint in the series.

We �rst do some comparisons across instruments Zt. We consider two instruments, one is the

previous period return (Zt−1 = rt−1), and the other is the previous period forecast error (Zt−1 =
εt−1). The simulation results are listed in tables 7 and 8 below.

Table 7 Percentage of rejections of the null when the null is true. Parameter values µ = 0.10,
α1 = α2 = 0.30 and σ2 = 0.05. 2500 simulations.

Statistic
GH1 GH2 W LM LR

Rejection 10% 25.64 28.60 2.80 5.20 0.96
level 5% 16.44 19.64 1.44 2.08 0.32

1% 5.44 8.56 0.32 0.36 0.00

Instruments are past returns.

Statistic
GH1 GH2 W LM LR

Rejection 10% 32.80 32.96 9.20 12.08 11.88
level 5% 23.20 22.08 3.68 6.16 6.08

1% 10.44 9.44 0.72 0.88 1.20

Instruments are past forecast errors.

Table 8 Percentage of rejections of the null when the null is false. Parameter values µ = 0.10,
α1 = 0.50, α2 = 0.10 and σ2 = 0.05. 2500 simulations.

Statistic
GH1 GH2 W LM LR

Rejection 10% 93.80 92.72 20.52 84.60 22.76
level 5% 86.36 86.92 12.48 74.68 18.72

1% 62.24 67.20 3.92 47.28 11.08

Instruments are past returns.

Statistic
GH1 GH2 W LM LR

Rejection 10% 88.36 89.52 87.92 92.04 91.72
level 5% 78.80 82.48 76.60 85.56 86.28

1% 52.64 62.24 42.72 64.76 66.28

Instruments are past forecast errors.

First, consider the results with no parameter change, listed in table 7. The Ghysels and Hall

statistics GH1 and GH2 over-reject the null, but the Andrews and Fair statistics W , LM and

LR are close to the correct rejection percentages. Comparing the two instruments, using past

forecast errors as instruments is clearly preferable to using past returns. This point is made even

stronger in table 8. This table is generated with a parameter change, the autoregressive parameter

α changes from 0.1 to 0.5. The statistics using forecast errors have higher power than the ones using

past returns. Because of these results, we have in the the paper concentrated on estimation using

forecast errors as instruments.
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We next do a more detailed investigation of the statistics using forecast errors as instruments.

In addition to looking at rejection percentages, we examine the ability of the statistics to estimate

power from the sample. For a speci�ed alternative and sample size, the statistics will follow non-

central chi-square distributions with noncentrality parameters that depend on the covariance matrix.

If we use the covariance matrix estimated from the data, we can calculate an estimated noncentrality

parameter. Using this will give an estimate of the power. In the simulations we compare the results

of this calculation with the percentage of rejections in the sample. Appendix B gives further details

on the power calculations. Table 9 below shows the results.

Table 9 �Power� calculations for alternative parameter values. The numbers are percentage re-
jections in the sample under the speci�ed alternative α2. The �estimated power� calculations are
averages of the power calculated from the sample. 2500 simulations used.

GH Statistics AF Statistics
T α1 α2 η Reject at GH1 GH2 Est.Power W LM LR Est.Power

200 0.20 0.20 0.000 10% 31.72 32.04 10.00 7.84 9.92 9.64 10.00
5% 21.72 21.36 5.00 3.68 4.84 4.96 5.00
1% 9.36 9.20 1.00 0.44 1.20 1.28 1.00

0.30 1.414 10% 40.72 41.12 32.85 15.68 17.96 17.64 35.91
5% 30.48 31.32 22.12 7.32 10.40 10.44 24.91
1% 15.92 16.92 8.37 1.56 2.88 3.08 9.82

0.40 2.828 10% 59.92 62.00 84.32 34.28 39.92 39.84 81.14
5% 48.52 51.12 76.38 20.40 28.00 27.60 71.69
1% 28.56 33.28 56.76 5.56 10.64 10.68 48.78

0.50 4.243 10% 79.52 81.96 99.28 60.68 67.92 67.52 98.07
5% 72.04 75.08 98.56 42.92 55.40 54.64 96.14
1% 52.32 58.36 95.46 12.76 29.72 29.72 88.04

If we �rst look at the results for the GH statistics, we note that GH2 gives better results than

GH1. Both the GH statistics seriously over-reject the null. The GH and AF statistics are not

directly comparable, since in calculating the AF statistics, the form of the parameter change is

known, and the AF statistics are designed to test against this particular form of parameter change.

The GH statistics may have better properties in cases with other (unspeci�ed) types of parameter

change. The Wald statistic has the lowest power of the three AF statistics. This may be related

to the well-known problems in using the Wald statistic, that it is in �nite samples not invariant to

rotations of the moment conditions.5 There is little di�erence between LM and LR.

If we now turn to the power calculations, it is clear that the power estimated from the sample

is seriously overstated. For the cases considered here, it seems to of little practical usefulness. We

have therefore not reported it in the tests on stock market data.

5For some examples in the ML case, see Dagenais and Dufour (1991) and the references therein.
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5.2 Statistics with an unknown time of structural change.

We next investigate the tests with an unknown time of parameter change. The moment conditions

and the simulated series are the same as above. The time of parameter change is again the midpoint

of the series. In table 10 we list the percentages of rejection of the null in the case when there is

no actual change in the parameter. Table 11 lists the same percentages when the null is false, the

autoregressive parameter α changes.

Table 10 Percentage rejections of the null when the null is true. Parameter values µ = 0.10,
α1 = α2 = 0.30, σ2 = 0.05. 2500 simulations.

W LM LR
Rejection 1% 17.00 0.52 1.16
level: 5% 25.56 2.92 5.56

10% 31.28 6.56 10.68

Table 11 Percentage rejections of the null when the null is false. Parameter values µ = 0.10,
α1 = 0.50, α2 = 0.10 and σ2 = 0.05. 2500 simulations.

W LM LR
Rejection 1% 48.56 33.96 39.00
level: 5% 65.72 65.16 67.96

10% 73.40 77.08 79.16

The results show that the Wald statistic seriously over-rejects the null when the null is true.

The other statistics have more reasonable behaviour. In particular, the LR statistic performs very

well. The problem with the Wald statistic is caused by the small sample. The Wald statistic uses

an unrestricted estimate of the parameters, where some of the parameters are estimated in each

subperiod. The smallest subperiod contains 15% of the total sample, which in this case is only

30 observations. This may be to be too few observations to obtain a reasonable estimate of the

parameters. This is illustrated in �gures 4 and 5. The �gures shows histograms of estimated time

of structural change when the null is rejected, in a case where there actually is a structural change.

The estimates for the Wald statistics are concentrated in the tails, whereas the LR estimates are

concentrated at the true breakpoint of T1 = 100. Unreported results show that for increased sample

sizes the behaviour of the Wald statistic improves. However, the LM and LR statistics are clearly

preferred to the Wald statistic.

In view of the results of Section 4.1, where we found an estimated breakpoint which was close to

one of the endpoints of the period, it may also be of interest to investigate how these tests behaves

if the true time of structural change is away from the midpoint of the time period.
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Figure 4 Estimates of breakpoint when the null is rejected, using the Wald tests. True breakpoint
at t = 100. Parameter values µ = 0.10, α1 = 0.50, α2 = 0.10 and σ2 = 0.05. 2500 simulations.
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Figure 5 Estimates of breakpoint when the null is rejected, using the Likelihood Ratio test. True
breakpoint at t = 100. Parameter values µ = 0.10, α1 = 0.50, α2 = 0.10 and σ2 = 0.05. 2500
simulations.
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6 Conclusion

This paper investigated possible changes in autoregressive relationships of stock indices when deriva-

tive securities were introduced. We showed how this could be explicitly tested by applying tests for

structural change in a GMM estimation context, due to Andrews and Fair (1988) and Ghysels and

Hall (1990) and Andrews (1990).

The small-sample properties of the statistics were investigated using Monte Carlo. The Ghysels

and Hall statistics were shown to have bad small sample properties for this problem. For the

Andrews and Fair statistics, we note that the �Likelihood Ratio�like� and �Lagrange Multiplier�

like� statistics perform better than the Wald statistic. This is in particular true for tests where the

time of parameter change is unknown.

We used the tests on US stock market data for the period 1976-1989. We �rst considered cases

with a constant conditional variance. We could then reject a null of parameter constancy of the

autoregressive parameter for daily S&P 500 index returns. We did not reject for daily EW returns.

By looking at size-based portfolios we could con�rm that a major source of the rejections on the

value-weighted S&P 500 index is the behaviour of stocks of large-sized �rms. We also looked at a

parameterisation where we allowed the conditional variance to change by using an ARCH process.

With these assumptions we could not reject a null hypothesis of a constant autoregressive parameter

on the daily S&P 500 returns. We therefore conclude that a major in�uence of the observed decline

in the sample autocorrelations of S&P 500 returns is changes in conditional variance. This increase

in variance will increase the uncertainty in estimates of the autocorrelation, which can result in a

decline in the sample autocorrelation.

To further investigate causes of the changes in autoregressive relationships, we looked at cross�

correlations across stocks, in view of the well�known �stylised fact� that a source of much of index

autocorrelation is lagged cross�correlations across stocks. We found that there has been a change

in the return predictability concentrated on the largest-sized portfolio.
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APPENDIX.

A Detailed estimation results.

In this appendix we list the results for all the statistics, together with the point estimates of the

parameters calculated in the tests with known breakpoint.

A.1 Tests with �xed conditional variance.

Daily Returns.

GH1 GH2

EW 6.24 (0.182) 7.65 (0.105)

S&P 18.53 (0.001) 30.77 (0.000)

W LM LR

EW 1 3.03 (0.082) 3.95 (0.047) 2.71 (0.100)

2 3.02 (0.221) 3.90 (0.142) 2.72 (0.257)

3 2.87 (0.412) 5.16 (0.160) 3.01 (0.390)

4 2.64 (0.104) 2.99 (0.084) 2.76 (0.097)

S&P 1 3.09 (0.079) 8.76 (0.003) 6.30 (0.012)

2 4.71 (0.095) 12.98 (0.002) 9.78 (0.008)

3 13.83 (0.003) 16.24 (0.001) 15.12 (0.002)

4 0.61 (0.437) 1.20 (0.274) 0.73 (0.392)

Hypothesis test of parameter constancy. 1976-1989. Change point 1/1/1983. Daily returns. Num-

bers in parenthesis are probability values. Tests: 1: Test whether α is constant. 2: Joint test of

whether α and µ are constant. 3: Joint test of whether α, µ and σ are constant. 4: Test for change

in α, allowing for change in the variance σ.
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µ α σ2 χ2

OLS 0.0007 0.2739 0.00006

GMM 0.0007 0.2624 0.00005

(0.0001) (0.0561) (0.00001) 1.27 (0.26)

OLS 1 0.0007 0.3253 0.00005

GMM 1 0.0006 0.3838 0.00005

(0.0002) (0.0375) (0.00000) 3.64 (0.06)

OLS 2 0.0006 0.2282 0.00006

GMM 2 0.0005 0.2406 0.00005

(0.0002) (0.1027) (0.00001) 0.87 (0.35)

GMM Restr 0.0005 0.3713 0.00005

( 0.0001) ( 0.0354) ( 0.00000) 4.15 (0.13)

GMM Unrestr 1 0.0006 0.3856 0.2250 0.00005

( 0.0001) (0.0368) (0.0930) ( 0.00000) 2.80 (0.59)

GMM Unrestr 2 0.0006 0.0006 0.3844 0.2289 0.0000

( 0.0002) (0.0002) (0.0385) (0.1012) ( 0.00000) 2.79 (0.42)

GMM Unrestr 3 0.0006 0.0005 0.3830 0.2275 0.00005 0.00005

( 0.0002) (0.0002) (0.0385) (0.1012) (0.00000) (0.00001) 2.64 (0.27)

GMM Restr 4 0.0005 0.3725 0.00005 0.00005

( 0.0001) ( 0.0356) ( 0.00000) (0.00001) 4.06 (0.26)

GMM Unrestr 4 0.0006 0.3859 0.2182 0.00005 0.00005

( 0.0001) (0.0368) (0.0937) ( 0.00000) (0.00001) 2.68 (0.44)

Equally weighted index
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µ α σ2 χ2

OLS 0.0004 0.0674 0.00010

GMM 0.0005 0.0576 0.00009

(0.0002) (0.0579) (0.00001) 1.14 (0.29)

OLS 1 0.0002 0.1286 0.00007

GMM 1 0.0002 0.1288 0.00007

(0.0002) (0.0262) (0.00000) 0.07 (0.79)

OLS 2 0.0006 0.0311 0.00012

GMM 2 0.0007 0.0057 0.00010

(0.0003) (0.0853) (0.00001) 1.06 (0.30)

GMM Restr 0.0004 0.1074 0.00007

( 0.0002) ( 0.0243) ( 0.00000) 8.14 (0.02)

GMM Unrestr 1 0.0005 0.1292 -0.0571 0.00007

( 0.0002) (0.0256) (0.0764) (0.00000) 4.98 (0.29)

GMM Unrestr 2 0.0003 0.0009 0.1306 -0.0928 0.0001

( 0.0002) (0.0003) (0.0259) (0.0793) ( 0.00000) 3.24 (0.36)

GMM Unrestr 3 0.0002 0.0007 0.1288 0.0163 0.00007 0.00010

( 0.0002) (0.0003) (0.0259) (0.0938) (0.00000) (0.00001) 0.57 (0.75)

GMM Restr 4 0.0004 0.1212 0.00007 0.00011

( 0.0002) ( 0.0248) (0.00000) (0.00001) 1.79 (0.62)

GMM Unrestr 4 0.0004 0.1274 0.0522 0.00007 0.00010

( 0.0002) (0.0257) (0.0885) ( 0.00000) (0.00001) 1.42 (0.70)

S&P 500 index

Parameter estimates from estimation. Daily returns. 1976 to 1989. Breakpoint 1/1/83. GMM is estimated using

all the data. GMM 1 is estimated using the �rst subperiod's data, GMM 2 uses the second subperiod's data.

The restricted GMM estimator GMM restr is calculated imposing the null hypothesis. GMM unrestr is calculated

without imposing the null. OLS is the corresponding Least Squares estimates. The values below the point estimates

are estimated standard deviations. The last two columns lists the chi-square test of overidentifying restrictions.
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Weekly returns.

GH1 GH2

EW 1.35 (0.854) 1.16 (0.885)

S&P 3.08 (0.544) 2.61 (0.626)

W LM LR

EW 1 0.00 (0.949) 0.00 (0.949) 0.00 (0.949)

2 0.49 (0.784) 0.52 (0.771) 0.53 (0.769)

3 1.13 (0.769) 1.14 (0.768) 1.09 (0.780)

4 0.05 (0.831) 0.04 (0.833) 0.05 (0.829)

S&P 1 0.67 (0.414) 0.68 (0.410) 0.67 (0.412)

2 1.69 (0.430) 2.03 (0.362) 1.90 (0.387)

3 1.71 (0.634) 2.13 (0.546) 1.98 (0.577)

4 0.71 (0.399) 0.71 (0.398) 0.71 (0.400)

Hypothesis test of parameter constancy. 1976-1989. Change point 1/1/1983. Weekly returns.

Numbers in parenthesis are probability values. 1: Test whether α is constant. 2: Joint test of

whether α and µ are constant. 3: Joint test of whether α, µ and σ are constant. 4: Test for change

in α, allowing for change in the variance σ.
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µ α σ2 χ2

OLS 0.0034 0.2261 0.00045

GMM 0.0034 0.2405 0.00039

(0.0009) (0.0658) (0.00005) 2.44 (0.12)

OLS 1 0.0042 0.2020 0.00049

GMM 1 0.0036 0.2534 0.00043

(0.0014) (0.0767) (0.00005) 2.72 (0.10)

OLS 2 0.0026 0.2459 0.00040

GMM 2 0.0028 0.2568 0.00036

(0.0011) (0.1033) (0.00008) 0.38 (0.54)

GMM Restr 0.0030 0.2679 0.00041

(0.0008) (0.0597) (0.00004) 2.03 (0.36)

GMM Unrestr 1 0.0030 0.2658 0.2728 0.00041

(0.0009) (0.0685) (0.0964) (0.00004) 2.02 (0.73)

GMM Unrestr 2 0.0037 0.0026 0.2452 0.2879 0.0004

(0.0013) (0.0011) (0.0742) (0.0991) (0.00004) 1.76 (0.62)

GMM Unrestr 3 0.0036 0.0028 0.2496 0.2556 0.00043 0.00036

(0.0013) (0.0011) (0.0750) (0.1071) (0.00005) (0.00008) 1.47 (0.48)

GMM Restr 4 0.0031 0.2579 0.00044 0.00036

(0.0009) (0.0606) ( 0.00005) (0.00007) 1.63 (0.65)

GMM Unrestr 4 0.0031 0.2649 0.2404 0.00044 0.00035

(0.0009) (0.0686) (0.1014) (0.00005) (0.00008) 1.60 (0.66)

Equally weighted index
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µ α σ2 χ2

OLS 0.0020 0.0395 0.00045

GMM 0.0022 0.0212 0.00041

(0.0008) (0.0503) (0.00003) 1.54 (0.21)

OLS 1 0.0012 0.0455 0.00043

GMM 1 0.0012 0.0975 0.00043

(0.0011) (0.0653) (0.00004) 2.22 (0.14)

OLS 2 0.0027 0.0246 0.00046

GMM 2 0.0031 -0.0080 0.00041

(0.0011) (0.0634) (0.00005) 0.66 (0.42)

GMM Restr 0.0022 0.0354 0.00043

(0.0008) (0.0445) (0.00003) 2.57 (0.28)

GMM Unrestr 1 0.0022 0.0726 0.0014 0.00043

(0.0008) (0.0632) (0.0618) ( 0.00003) 2.23 (0.69)

GMM Unrestr 2 0.0013 0.0030 0.0835 -0.0053 0.0004

(0.0011) (0.0011) (0.0664) (0.0632) (0.00003) 1.61 (0.66)

GMM Unrestr 3 0.0013 0.0031 0.0852 -0.0073 0.00043 0.00041

(0.0011) (0.0011) (0.0667) (0.0638) (0.00004) (0.00005) 1.57 (0.46)

GMM Restr 4 0.0022 0.0351 0.00043 0.00043

(0.0008) (0.0446) ( 0.00004) (0.00005) 2.56 (0.47)

GMM Unrestr 4 0.0022 0.0737 -0.0001 0.00044 0.00042

(0.0008) (0.0633) (0.0623) (0.00004) (0.00005) 2.20 (0.53)

S&P 500 index

Parameter estimates. Weekly returns. 1976 to 1989. Breakpoint 1/1/83. GMM is estimated using all the data.

GMM 1 is estimated using the �rst subperiod's data, GMM 2 uses the second subperiod's data. The restricted GMM

estimator GMM restr is calculated imposing the null hypothesis. GMM unrestr is calculated without imposing the

null. OLS is the corresponding Least Squares estimates. The values below the point estimates are estimated standard

deviations. The last two columns show the results of the chi-square test of overidentifying restrictions (J-test).
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A.2 Tests with an ARCH variance.

Daily returns.

GH1 GH2

EW 10.37 (0.110) 13.72 (0.033)

S&P 21.25 (0.002) 32.09 (0.000)

W LM LR

EW 1 0.36 (0.549) 0.49 (0.485) 0.57 (0.449)

S&P 1 1.42 (0.234) 1.67 (0.197) 1.98 (0.159)

Hypothesis test of parameter constancy. 1976-1989. Change point 1/1/1983. Daily returns. Numbers in

parenthesis are probability values. Tests: 1: Test whether β1 is constant.

β0 β1 α0 α1 χ2

OLS 0.0007 0.2739 0.00006

GMM 0.0007 0.2861 0.00004 0.04352

(0.0001) (0.0537) (0.00000) (0.02983) 3.50 (0.17)

OLS 1 0.0007 0.3253 0.00005

GMM 1 0.0007 0.3549 0.00005 -0.05647

(0.0002) (0.0333) (0.00000) (0.04243) 7.84 (0.02)

OLS 2 0.0006 0.2282 0.00006

GMM 2 0.0006 0.2708 0.00005 0.03389

(0.0002) (0.1013) (0.00001) (0.02474) 2.56 (0.28)

GMM Restr 0.0006 0.3394 0.00004 0.01224

( 0.0001) ( 0.0298) ( 0.00000) ( 0.01659) 6.95 (0.43)

GMM Unrestr 1 0.0006 0.3473 0.2928 0.00004 0.01490

( 0.0001) (0.0311) (0.0793) ( 0.00000) ( 0.01847) 6.67 (0.46)

Equally weighted index

β0 β1 α0 α1 χ2

OLS 0.0004 0.0674 0.00010

GMM 0.0004 0.0947 0.00008 0.06665

(0.0002) (0.0444) (0.00000) (0.04664) 1.43 (0.49)

OLS 1 0.0002 0.1286 0.00007

GMM 1 0.0002 0.1316 0.00006 0.07887

(0.0002) (0.0260) (0.00000) (0.02952) 0.47 (0.79)

OLS 2 0.0006 0.0311 0.00012

GMM 2 0.0006 0.0601 0.00010 0.06011

(0.0002) (0.0724) (0.00001) (0.05044) 1.46 (0.48)

GMM Restr 0.0004 0.1105 0.00007 0.03766

( 0.0001) ( 0.0238) ( 0.00000) ( 0.02010) 11.51 (0.12)

GMM Unrestr 1 0.0005 0.1211 0.0246 0.00007 0.02539

( 0.0001) (0.0256) (0.0600) ( 0.00000) ( 0.01955) 10.52 (0.16)

S&P 500 index

Parameter estimates. Daily returns. 1976 to 1989. Breakpoint 1/1/83. GMM is estimated using all the

data. GMM 1 is estimated using the �rst subperiod's data, GMM 2 uses the second subperiod's data. The
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restricted GMM estimator GMM restr is calculated imposing the null hypothesis. GMM unrestr is calculated

without imposing the null. OLS is the corresponding Least Squares estimates. The values below the point

estimates are estimated standard deviations. The last two columns show the results of the chi-square test of

overidentifying restrictions.
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Weekly returns.

GH1 GH2

EW 3.11 (0.795) 3.72 (0.714)

S&P 6.41 (0.379) 4.82 (0.567)

W LM LR

EW 1 0.09 (0.768) 0.08 (0.772) 0.17 (0.684)

S&P 1 0.13 (0.723) 0.12 (0.731) 0.12 (0.727)

Hypothesis test of parameter constancy. 1976-1989. Change point 1/1/1983. Weekly returns. Numbers in

parenthesis are probability values. Tests: 1: Test whether β1 is constant.

β0 β1 α0 α1 χ2

OLS 0.0034 0.2261 0.00045

GMM 0.0038 0.2119 0.00035 0.10163

(0.0009) (0.0652) (0.00005) (0.06275) 2.63 (0.27)

OLS 1 0.0042 0.2020 0.00049

GMM 1 0.0038 0.2353 0.00041 0.03675

(0.0012) (0.0679) (0.00007) (0.09612) 2.84 (0.24)

OLS 2 0.0026 0.2459 0.00040

GMM 2 0.0029 0.2966 0.00036 0.03529

(0.0011) (0.0998) (0.00008) (0.02395) 1.84 (0.40)

GMM Restr 0.0033 0.2558 0.00039 0.04991

(0.0008) (0.0568) (0.00004) (0.01846) 2.83 (0.90)

GMM Unrestr 1 0.0033 0.2440 0.2878 0.00039 0.04519

(0.0008) (0.0651) (0.0942) (0.00004) (0.01977) 2.74 (0.91)

Equally weighted index

β0 β1 α0 α1 χ2

OLS 0.0020 0.0395 0.00045

GMM 0.0021 0.0118 0.00038 0.10441

(0.0008) (0.0481) (0.00003) (0.05100) 1.61 (0.45)

OLS 1 0.0012 0.0455 0.00043

GMM 1 0.0006 0.1030 0.00031 0.15399

(0.0011) (0.0702) (0.00004) (0.09134) 8.67 (0.01)

OLS 2 0.0027 0.0246 0.00046

GMM 2 0.0031 0.0265 0.00039 0.05191

(0.0011) (0.0553) (0.00004) (0.04031) 1.19 (0.55)

GMM Restr 0.0019 0.0399 0.00036 0.06280

( 0.0008) ( 0.0415) ( 0.00003) ( 0.03371) 8.39 (0.30)

GMM Unrestr 1 0.0018 0.0570 0.0286 0.00036 0.06312

( 0.0008) (0.0641) (0.0522) ( 0.00003) ( 0.03346) 8.33 (0.30)

S&P 500 index

Parameter estimates. Weekly returns. 1976 to 1989. Breakpoint 1/1/83. GMM is estimated using all the

data. GMM 1 is estimated using the �rst subperiod's data, GMM 2 uses the second subperiod's data. The

restricted GMM estimator GMM restr is calculated imposing the null hypothesis. GMM unrestr is calculated

without imposing the null. OLS is the corresponding Least Squares estimates. The values below the point
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estimates are estimated standard deviations. The last two columns show the results of the chi-square test of

overidentifying restrictions.
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B A general description of the GMM estimation and the stability

tests.

This appendix hold the formal de�nitions of the test statistics used in the paper.

B.1 GMM.

To summarise the GMM estimation method, de�ne f(xt, θ) as the vector of moment conditions,

where {xt}T
t=1 is the data, and θ is the vector of parameters. With this notation the moment

conditions are expressed as

E[f(xt, θ0)] = 0

where θ0 is the true parameter. The optimal GMM estimator θ̂T is de�ned to be

θ̂T = arg min
θ

g(X, θ)′ÂT g(X, θ)

where

g(X, θ) =
1
T

T∑
t=1

f(xt, θ).

The weighting matrix ÂT is a consistent estimator of S−1, where

S(θ) =
∞∑

t=−∞

∞∑
s=−∞

E[f(xt, θ)f(xt+s, θ)′],

the covariance matrix of the moment conditions. The strategy in estimation is to use an initial

consistent set of parameters, say θ∗, to generate an initial estimate ÂT . This estimated ÂT is then

used in the further estimation of θ̂T . In the paper, we use the OLS estimate as an initial consistent

estimate.

B.2 The Andrews and Fair statistics.

We �rst consider the tests formulated by Andrews and Fair (1988). These are tests where the

breakpoint is known. The sample is split into two, and the moment conditions are formulated as:

f(xt, θ) =



[
f1(xt, θ1, θ3)

0

]
for xt ∈ X1[

0
f2(xt, θ2, θ3)

]
for xt ∈ X2
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The estimation minimises

d(X, θ) = 1
2g(X, θ)′ÂT g(X, θ)

where

g(X, θ) =
1
T

T∑
t=1

f(xt, θ).

The test statistics proposed by Andrews and Fair (1988) uses the following matrices.

S =
∞∑

t=−∞

∞∑
s=−∞

E[f(xt, θ)f(xt+s, θ)′]

M = E[
∂

∂θ′
f(xt, θ)]

D = E

[
∂2

∂f∂f ′
1
2f(xt, θ)Af(xt, θ)′

]
= A

I = M ′DM

J = M ′DSDM

V = J −1IJ −1

The estimators of M and D are obtained from their sample counterparts. If there is temporal depen-

dence in the moment conditions, to guarantee a positive de�nite weighting matrix, the estimator ŜT

of S can be calculated using methods analogous to the estimators of covariance matrices proposed

by Andrews (1991), Eichenbaum, Hansen, and Singleton (1988) and Newey and West (1987).

In order to de�ne the tests, describe the hypothesis to be tested in the form

h(θ) = 0

In the case of pure parameter change

h(θ) = θ1 − θ2 = 0

De�ne

H =
∂

∂θ′
h(θ)

On our case θ = (θ1, θ2, θ3) and H = [1,−1, 0].

Let θ̃T de�ne the restricted GMM estimator of θ, where we impose the null hypothesis h(θ) = 0.
Similarly, let θ̂T be the unrestricted GMM estimator of θ.
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The Wald statistic WT is de�ned as

WT = Th(θ̂)′(ĤV̂ Ĥ ′)−1h(θ̂)

The LM statistic is de�ned as

LMT = T

(
∂

∂θ′
d(X, θ̃)

)′
Ĩ−1H̃ ′(H̃Ṽ H̃ ′)−1H̃Ĩ−1

(
∂

∂θ′
d(X, θ̃)

)
where

Ṽ = J̃ −1ĨJ̃ −1

and

Ĩ = M̃ ′D̃ŜD̃M̃

In the GMM context, assumption 6a (page 624) of Andrews and Fair is ful�lled, I = bJ for b = 1.
The Likelihood Ratio statistic LR is in this case de�ned as

LRT = 2T [d(X, θ̃)− d(X, θ̂)]

By theorem 4 of Andrews and Fair, all the statistics WT , LMT and LRT converges in distribution to

a chi-square statistic with degrees of freedom equal to the number of restrictions in the hypothesis.

Power calculations. Under the standard case of Pitman Drift, θ = θ0 + η/
√

T , the statistics will

converge in distribution to a non-central chi-square with noncentrality parameter

δ2 = η′H ′(HV H ′)−1Hη

For a given �nite sample size T , and a given alternative θ, the power is approximated from a

non-central chi square with noncentrality parameter

δ2
T = Th(θT )′(HV H ′)−1h(θT ).

Small sample corrections. When calculating the statistics, we do the standard corrections for

sample size by replacing the number of observations T with T − r, where r is the number of

restrictions in the hypotheses to be tested.

B.3 The Ghysels and Hall statistics.

We next consider the test statistics proposed by Ghysels and Hall (1990). Their method is essentially

to test the �t the estimated parameters from one period in the moment conditions of the other period.

This is very similar to the standard GMM test of overidentifying restrictions. For i = 1 to 2, de�ne
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θ̂i as the GMM estimator of θ, where only the data in Xi is used to do the estimation. Their test

statistic GH is calculated as

GH1 = T2g2(θ̂1)′V̂ −1
2 g2(θ̂1)

where

g2(θ) =
1
T2

T1+T2∑
t=T1+1

f(xt, θ)

V̂2 = Ŝ2 +
T2

T1
M̃2(M̂ ′

1Ŝ
−1
1 M̂1)−1M̃ ′

2

Mi(θ) = E

[
∂

∂θ
f(xt, θ)

]
xt ∈ Xi

M̃2(θ) = E

[
∂

∂θ
f(xt, θ)

∣∣∣∣ θ=θ1 ] xt ∈ X2

Si =
∑

t

∑
s

E[fi(xt, θ)fi(xt+s, θ)′] xt, xs+t ∈ Xi

The parameters estimated using data from the �rst period is used in the moment conditions for the

second period. Under the null hypothesis, GH1 converges in distribution to a chi-square distribution

with p degrees of freedom, where p is the number of orthogonality conditions in f(·).

Since under the null, the variance covariance matrix is stationary, we can replace the estimate Ŝ2

with an estimate Ŝ of S calculated from all the data.

S =
∑

t

∑
s

E[fi(xt, θ)fi(xt+s, θ)′] xt, xs+t ∈ X

This estimated S is then used in the calculations instead of S2.

V̂ = Ŝ +
T2

T1
M̃2(M̂ ′

1Ŝ
−1M̂1)−1M̃ ′

2

which gives the second GH statistic

GH2 = T2g2(θ̂1)′V̂ −1g2(θ̂1)

Power calculations. Similarly to Andrews and Fair, we can do power calculations based on the

noncentral chi-square distribution. The noncentrality parameter is

δ2 = η′M̃ ′
2V

−1
2 M̃2η,

where η is the Pitman drift term.
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B.4 Stability test with unknown breakpoint.

These tests are described fully in Andrews (1990). To de�ne the tests, we index the time of possible

parameter change by π ∈ [0, 1]. For example, WT (π) is the Wald statistic W described in the

previous section with a possible breakpoint T1 = bπT c.

The test statistics proposed by Andrews are

sup
π∈Π

WT (π), sup
π∈Π

LMT (π) and sup
π∈Π

LRT (π),

where Π is a strict subset of [0, 1]. All these statistics converges in distribution to supπ∈Π Qp(π),
where p is the degrees of freedom, and Qp(·) is the �square of a standardised tied-down Bessel

process of order p� Andrews (1990), page 32.

There is not a closed form solution for this probability distribution, so using Monte Carlo approx-

imations, Andrews provides critical values for supQp(π) with a choice of Π = [0.15, 0.85]. In our

work, we use this value of Π, and rely on the critical values provided by Andrews. Table 12 below

replicates the relevant critical values.

Table 12 Critical values for the statistics.
Degrees of Signi�cance level
Freedom 1% 2.5% 5% 10%

1 12.3 10.3 8.7 7.2
2 15.3 13.4 11.7 10.2
3 18.3 13.4 11.7 12.3
Source: Andrews (1990)
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