Roll

Roll [1984] takes the bid/ask spread as given, but a very neat idea. Problem: How can one measure bid/ask spread from observed trade prices?
Well, if we take as given the existence of spread, implication for successive price movements: Tend to bounce back and forth, depending on whether trades are buyer or seller initiated. If no new information hits the market, underlying "true" price does not move. Impossible to have two succesive positive or negative price movements.
This enough to generate interesting time series implications.

Setup: Suppose last observed trade (at time $t-1$) was at bid.

How can prices change over next two periods, if no new information moves the price?

Only two possible prices at times t and $t+1: P_{t-1}$ and $P_{t-1}+s$. Probabilities
Assume each order arriving to the market has equal probabilities of being a buyer and a seller initiated order.
Then: Each branch has probability $\frac{1}{2}$.

$$
\begin{aligned}
& P\left(P_{t}=P_{t-1} \mid P_{t-1} \text { was at bid }\right)=\frac{1}{2} \\
& P\left(P_{t}=P_{t-1}+s \mid P_{t-1} \text { was at bid }\right)=\frac{1}{2}
\end{aligned}
$$

What implications has this for succesive price changes?

Calculate joint (unconditional) probabilities. Define

$$
\Delta P_{t}=P_{t}-P_{t-1}
$$

Calculate probabilities conditional on being at the bid

		$\Delta P_{t}=P_{t}-P_{t-1}$			
		$-s$	0	$+s$	
	Prob.	0	$\frac{1}{2}$	$\frac{1}{2}$	
ΔP_{t+1}	$-s$		0	0	$\frac{1}{2} \frac{1}{2}=\frac{1}{4}$
	0		0	$\frac{1}{2}$	$\frac{1}{2}=\frac{1}{4}$
	$\frac{1}{2} \frac{1}{2}=\frac{1}{4}$				
	$+s$		0	$\frac{1}{2} \frac{1}{2}=\frac{1}{4}$	0

Similarly, calculate probabilities conditional on being at the ask

		ΔP_{t}		
		$-s$	0	$+s$
		Prob.	$\frac{1}{2}$	$\frac{1}{2}$
		0		
ΔP_{t+1}	$-s$		0	$\frac{1}{4}$
	0		0	
	$+s$		$\frac{1}{4}$	$\frac{1}{4}$
		$\frac{1}{4}$	0	0

Unconditional, multiply with probability of each conditional state occurring, here equal to $\frac{1}{2}$.

Calculate the theoretical covariance

$$
\operatorname{cov}\left(\Delta p_{t}, \Delta p_{t+1}\right)=E\left[\left(\Delta p_{t}-E\left[\Delta p_{t}\right]\right)\left(\Delta p_{t+1}-E\left[\Delta p_{t+1}\right]\right)\right]
$$

What is $E\left[\Delta p_{t}\right]$?
Since each state equally likely to occur,

$$
E\left[\Delta p_{t}\right]=E\left[\Delta p_{t+1}\right]=0
$$

Thus,

$$
\begin{aligned}
& \operatorname{cov}\left(\Delta p_{t}, \Delta p_{t+1}\right)=E\left[\Delta p_{t} \Delta p_{t+1}\right] \\
& =\frac{1}{8}(-s)(+s)+\frac{1}{8}(+s)(-s)=\frac{1}{4}\left(-s^{2}\right)=-\frac{1}{4} s^{2}
\end{aligned}
$$

Thus, the bid ask bounce causes an induced serial correlation in returns, even if no news hits the market.

But this induced serial correlation allows us to estimate s ! Solving the above equation for s :

$$
s=2 \sqrt{-\operatorname{cov}\left(\Delta p_{t}, \Delta p_{t+1}\right)}
$$

To normalize, work with returns rather than price changes

$$
\hat{s}=200 \sqrt{-\operatorname{cov}\left(r_{t}, r_{t+1}\right)}
$$

Thus, get a nice, empirical estimate of the implied bid/ask spread. Need assumptions about what happens when "true" prices moves.

Actual calculation

If we do the calculation from prices, we get an estimate of the kroner spread
First calculate

$$
\operatorname{Scov}=\operatorname{cov}\left(\Delta p_{t}, \Delta p_{t-1}\right)
$$

If we do the calculation from returns, we get an estimate of the percentage spread

$$
\operatorname{Scov}=\operatorname{cov}\left(r_{t}, r_{t-1}\right)
$$

Calculate the spread as

$$
\hat{s}=\left\{\begin{array}{lll}
2 \sqrt{-S \operatorname{cov}} & \text { if } & S \operatorname{cov}<0 \\
? & \text { if } & S \operatorname{cov}>0
\end{array}\right.
$$

What to do if Scov >0 ?
Either put it at zero, or leave undefined.

What Data?

Ideally: Actual transaction data.
However: Also applied to data sampled at lower frequencies, such as daily.
Here making assumptions that the daily closing price as likely to be at the bid as at the ask.
In practice: Daily sampling gives reasonable estimates for
transaction costs, but many cases where the autocovariance is positive.
The daily autocovariance is more likely to be positive for heavily traded stocks.
Makes sense: With less heavily traded stocks get closer to transaction by transaction, even at daily frequency.

Exercise

The Roll [1984] estimator provides an estimate of the trading costs for a given security.
Using daily returns data for Odfjell (ODF), estimate the trading costs for the years 2008 to 2012.

Exercise Solution

Defining the Roll estimator

```
> Roll <- function(inp)\{
+ a <- acf(as.matrix(inp),plot=FALSE,lag=1,type="covariar
\(+\quad r<-0\)
+ Scov <- a\$acf[2]
\(+\quad\) if (Scov<0) \{ return (2*sqrt(-Scov)) \}
+ else \{ return (NA) \}
\(+\}\)
```

Exercise Solution cont Reading the data

```
pOD <- read.zoo("../data/odfjell.csv",
    header=TRUE,sep=";",format="%d.%m.%y")
pOD <- pOD$Siste
rOD <- diff(pOD)/pOD[-length(pOD)]
names(rOD) <- "rOD"
```


Exercise Solution cont

summary (rOD)	
Index	rOD
Min. :2008-02-07	Min. : -0.16631
1st Qu.:2009-05-12	1st Qu.:-0.01575
Median :2010-08-11	Median : 0.00000
Mean :2010-08-08	Mean : -0.00125
3rd Qu.:2011-11-06	3rd Qu.: 0.01250
Max. :2013-02-05	Max. : 0.13031
	NA's : 229

Exercise Solution cont

First doing the estimation for 2008:
> r <- na.omit(window(rOD, start=as.Date("2008-01-01"), enc
$>$ Roll(r)
[1] NA

Exercise Solution cont

Problem, which we see from the acf function

The autocovariance is not negative.

Exercise Solution cont

Doing 2009
> r <-na.omit(window(rOD, start=as.Date("2009-01-01"), end=
> Roll(r)
[1] 0.01367632
So here we estimate the trading cost at 1.4%.

Exercise Solution cont

Exercise Solution cont

Doing this for the other three years
> r <- na.omit(window(rOD, start=as.Date("2010-01-01"), enc
$>$ Roll(r)
[1] 0.01846564
> r <- na.omit(window(rOD, start=as.Date("2011-01-01"), enc
$>$ Roll (r)
[1] NA
> r <- na.omit(window(rOD, start=as.Date("2012-01-01"), enc
$>$ Roll(r)
[1] 0.0153559

Exercise Solution cont

Summarizing

Year	Cost estimate
2008	NA
2009	0.01367632
2010	0.01846564
2011	NA
2012	0.0153559

So when we get actual estimates, they give reasonable numbers.

Exercise

The simple Roll estimator of trading costs (from returns) is

$$
T C=2 \sqrt{-S c o v}
$$

where Scov is the autocovariance of stock returns.
We will use the Roll estimator to estimate trading costs for NHY for a number of different datasets.

- Using daily returns data for OSE, estimate the trading costs of Norsk Hydro for 1995, 1997, 1999, 2001, 2005 and 2012.
- Using actual trades of NHY for september 1997, estimate the trading costs.
- Using the actual trades of NHY for 3 dec 2012, estimate the trading costs using the Roll estimator.

Exercise Solution Let us start by writing the estimation of the Roll model as a R function
\# estimating the roll model
Roll <- function(inp)\{
a <- acf(as.matrix(inp),plot=FALSE,lag=1,type="covarianc
r <- 0
Scov <- a\$acf[2]
if (Scov<0) \{ return ($2 *$ sqrt (-Scov)) \}
else \{ return (NA) \}
\}

Exercise Solution ctd

and then we show the output of reading in the data and running the Roll estimation
\# read files pulled from OSE homepage
library(zoo)
NHYPric <- read.zoo("../data/nhy.csv", header=TRUE, format="\%d. \%m. \%y" , sep="\1
NHYPric <- NHYPric[,1]
names(NHYPric)[1] <- "NHYClose"

Exercise Solution ctd

Summarizing the data
> summary (DretNHY)

Index		DretNHY	
Min. $: 1980-01-03$	Min. $\quad:-0.2227000$		
1st Qu.:1988-04-08	1st Qu. $:-0.0101000$		
Median $: 1996-07-05$	Median $: 0.0000000$		
Mean $: 1996-07-05$	Mean $: 0.0005897$		
3rd Qu.:2004-10-11	3rd Qu. $: 0.0108000$		
Max. $: 2012-12-28$	Max. $: 0.2064000$		

Exercise Solution ctd

> NHY <- window(DretNHY, start=as.Date("1995-01-01"), end=a
$>$ Roll (NHY)
[1] NA
> NHY <- window(DretNHY, start=as.Date("1997-01-01"), end=as
$>$ Roll (NHY)
[1] NA
> NHY <- window(DretNHY, start=as.Date("1999-01-01"), end=as
$>$ Roll(NHY)
[1] NA
> NHY <- window(DretNHY, start=as.Date("2001-01-01"), end=as
$>$ Roll (NHY)
[1] NA
> NHY <- window(DretNHY, start=as.Date("2005-01-01"), end=as
$>$ Roll (NHY)
[1] 0.009454619
> NHY <- window(DretNHY, start=as.Date("2012-01-01"), end=as
> Roll(NHY)
[1] 0.002750503

Exercise Solution ctd

The estimates for NHY show an issue with using the Roll estimator. It may at times be undefined, since the calculation

$$
\sqrt{-S \operatorname{cov}}
$$

is only defined when Scov <0. Otherwise the estimator is not defined. So the Roll estimator may at times not actually give you an estimate.
Let us show the ACF for 1995, to illustrate this

Exercise Solution ctd

Let us next look at the trade by trade record for trading in NHY in september of 1997.
We consider two inputs: The trade by trade record, and daily returns, constructed from closing prices (last trade price of the day), and do it for the same time period, september of 2007.
> summary(prices97)

Index		Price	
Min. $\quad: 1997-09-01$	$09: 51: 00$		Min. $\quad: 395.0$
1st Qu. $: 1997-09-04$	$16: 59: 00$		1st Qu. $: 419.0$
Median $: 1997-09-11$	$15: 51: 00$		Median $: 426.0$
Mean $\quad: 1997-09-13$	$13: 13: 15$		Mean
3rd Qu. $: 1997-09-21$	$01: 25: 30$		3rd Qu. $: 431.0$
Max. $\quad: 1997-09-30$	$17: 01: 00$		Max. $: 440.5$

Exercise Solution ctd

Let us first look at the trade by trade Roll estimate
> R <- diff(log(P))
$>$ Roll(R)
[1] 0.002604668
and compare it to the estimate from taking the daily prices over the same time period.
> SRets <- read.zoo("../data/daily_rets.csv",
$+$
format="\%Y\%m\%d", header=TRUE,skip=2,s
> NHY <- window(na.omit(SRets\$Norsk.Hydro), start=as.Date('
> Roll (NHY)
[1] NA
As we see the Roll estimator is not even defined for the daily data.

Exercise Solution ctd

To see why, let us plot the ACF functions for the two cases.

ACF for trade by trade returns.

Price

Exercise Solution ctd

ACF for daily returns.
NHY

Exercise Solution ctd

So, the daily returns are positively autocorrelated for lags 1-3, and the Roll estimator is not defined.
The trade by trade case is much better, at least for this example. So, it may look like the daily case is not that useful, but it does tally with other cost measures, in the sense that when the Roll measure is defined, it has positive correlation in the crossection with spreads, etc: More illiquid stocks by other measures have higher estimates of Roll. Maybe this is due to the fact that for illiquid stocks, daily close prices are much closer to trade by trade prices...

Exercise Solution ctd

Let us look at the trade by trade case using data from december 2012.
> summary (p)

Index		Price	
Min. $\quad: 2012-12-03$	$08: 00: 22$		Min. $: 27.00$
1st Qu.:2012-12-03	$09: 37: 50$		1st Qu. $: 27.18$
Median $: 2012-12-03$	$11: 43: 08$		Median $: 27.24$
Mean $: 2012-12-03$	$11: 41: 58$		Mean
3rd Qu.:27.25	$: 2012-12-03$	$13: 49: 50$	
3rd Qu. $: 27.31$			
Max. $: 2012-12-03$	$15: 25: 25$		Max. $: 27.49$

Exercise Solution ctd

Running the estimates:
> R <- diff(log(p12))
> Roll(R)
[1] 0.0001815402
So the trading costs have gone down by a factor of 10 .

Richard Roll. A simple implicit measure of the effective bid-ask spread in an efficient market. Journal of Finance, 39(4):1127-1139, September 1984.

