
Matlab and similar matrix handlers
Bernt Arne Ødegaard

21 December 2023

1 Matrix handlers (matlab, scilab, octave, etc)
Purpose: Manipulating numerical relationships using notation similar to linear algebra.

Usually work on collections of numbers, represented by vectors and/or matrices.
Name the objects of interest (vectors/matrices) and specify manipulations of these.
Create a vector:

v=[1 ; 1]
v =

1
1

Create a matrix:

>> A = [1 1;0 1]
A =

1 1
0 1

Multiply the two

>> A*v
ans =

2
1

2 Linear Algebra
2.1 Basic matrix operations
Defining variables The basic variables we consider are numbers, vectors and matrices. The type of each
variable is determined as it is defined:

> a=1
a = 1
> b=2
b = 2
> c=3
c = 3
> y=[1;2;3]
y =

1

1

2
3

> x=[1,2,3]
x =

1 2 3
> A=[1 2 3;4 5 6]
A =

1 2 3
4 5 6

A space or a comma signifies a new number, a semicolon a new row. To suppress the printing of what is
defined, end the line with a semicolon:

> A=[1,2,3,4];
> A=[1,2,3,4]
A =

1 2 3 4

One can also use defined variables to define new variables, as long as the dimensions make sense. For
example, given the above definitions:

>B=[c x]
B =

3 1 2 3
> C = [A;x]
C =

1 2 3
4 5 6
1 2 3

> D = [A y]
error: number of rows must match
error: evaluating assignment expression near line 22, column 3

If the dimensioning is wrong, an error message is outpu, and the variable is not defined.
To see what is in a variable, print the value by giving its name:

> a
a = 1
> b
b = 2
> A
A =

1 2 3
4 5 6

> B
B =

5 1 2 3

Note that definitions are case-sensitive, both A and a are defined.

2.1.1 Arithmetic Matrix Operations

Let us look at how matrix arithmetic is performed
Addition and subtraction.
Numbers

2

> a=1;
> b=2;
> c=3;
> a+b
ans = 3
> b+c
ans = 5

Vectors

> x=[1 2 3 4]
x =

1 2 3 4
> y=[4 3 2 1]
y =

4 3 2 1
> x+y
ans =

5 5 5 5
> y-x
ans =

3 1 -1 -3

Take linear combinations of vectors:

> a*x + b*y
ans =

9 8 7 6
> 0.5*x -1.5*y
ans =

-5.50000 -3.50000 -1.50000 0.50000

Matrices

> A=[1 2 3; 4 5 6];
> B=[6 5 4; 3 2 1];
> A+B
ans =

7 7 7
7 7 7

> A-B
ans =

-5 -3 -1
1 3 5

> a*A + b*B
ans =

13 12 11
10 9 8

Matrix Multiplication When multiplying matrices, one must be more careful about dimensions, but
otherwise it is just like vector multiplication.

3

> A=[1 2 3;4 5 6]
A =

1 2 3
4 5 6

> B = [1 2;3 4; 5 6]
B =

1 2
3 4
5 6

> A*B
ans =

22 28
49 64

> B*A
ans =

9 12 15
19 26 33
29 40 51

For these matrices, both AB and BA are defined operations, but note that the results are different, in fact,
even the dimension of the product is different.

If we let Bbe a 2 × 2 matrix, then multiplying AB is an error.

> B=[1 2;3 4]
B =

1 2
3 4

>
error: nonconformant matrices (op1 is 2x3, op2 is 2x2)
> B*A
ans =

9 12 15
19 26 33

Matrix Operations Transpose
The transpose of a matrix a is a’:

> A
A =

1 2 3
4 5 6

> A’
ans =

1 4
2 5
3 6

Null and identity matrix

> null = zeros(3,3)
null =

0 0 0
0 0 0

4

0 0 0
> ident = eye(3,3)
ident =

1 0 0
0 1 0
0 0 1

Rank:

> A
A =

1 2 3
4 5 6

> rank(A)
ans = 2

Inverse

> D = [3 4;4 6]
D =

3 4
4 6

> inverse(D)
ans =

3.0000 -2.0000
-2.0000 1.5000

To make sure that this is the inverse, multiply D and inverse(D):

> D * inverse(D)
ans =

1 0
0 1

Idempotent matrix
So that you can see that there really exists idempotent matrices, consider

F =
[

1
2

1
2

1
2

1
2

]
> F = [0.5 0.5; 0.5 0.5]
F =

0.50000 0.50000
0.50000 0.50000

> F * F
ans =

0.50000 0.50000
0.50000 0.50000

Determinant

> B
B =

1 2
3 4

> det(B)
ans = -2

5

A Warning. Numerical errors.
One thing you should be aware of when using a matrix tool is that the underlying tools are floating

point number routines. All these are subject to numerical round–off errors, that may aggregate, and give
weird results. This is also a problem in doing numerical linear algebra, if a matrix is ill-conditioned. As an
example, consider the matrix

> A
A =

1 2 3
3 2 1
1 1 1

This matrix is singular, which you see if you take 1
4 times the sum of the first two rows, which is equal to

the third row. Since the matrix is singular, it does not have an inverse, and should have determinant equal
to zero. Let us check.

> det(A)
ans = -4.4409e-16
> inverse(A)
ans =

-2251799813685248 -2251799813685246 9007199254740989
4503599627370496 4503599627370494 -18014398509481980
-2251799813685248 -2251799813685248 9007199254740992

> rank(A)
ans = 2

As you see, because of numerical inaccuracies, this particular implementaion does not “catch” that the
determinant of Ais actually equal to zero, and tries to invert Agiving this extremely wrong estimate of the
inverse. The algorithm for finding the rank of the matrix, on the other hand, is accurate enough to find the
correct rank of 2. Taking determinants is thus useful as a diagnostic tool.1

Solving linear equations.
Remember the basic linear equation

Ax = b

We saw that this equation had a defined solution if the rank of Awas the same as the rank of [A|b]. If Ais
nonsingular, we solve the linear equation by finding the unique solution

x = A−1b

Consider the linear equation
3x1 + 4x2 = 5

4x1 + 6x2 = 8

Solve this system of equations
Write this in matrix form by defining

A =
[

3 4
4 6

]
b =

[
5
8

]
Let us first check that this system is solvable

1There are actually better tools available to check the condition of a matrix, which you may want to look at if you are doing
important computations.

6

> A = [3 4;4 6]
A =

3 4
4 6

> b=[5;8]
b =

5
8

> rank(A)
ans = 2
> rank ([A b])
ans = 2

Note how I create the augmented matrix [A|b] by [A b]. The rank of the two is the same. Since A is square,
we can calculate the solution as

> inverse(A)
ans =

3.0000 -2.0000
-2.0000 1.5000

> x = inverse(A) * b
x =

-1
2

The solution to the system of equations is

x =
[

−1
2

]
(In this case we calculated the solution by finding the inverse. But you should be aware that solving

the system of equations by calculation of the inverse is not the numerically most stable way of doing the
calculation. Octave has built in a direct linear matrix solver, which is invoked by the left division operator

> x = A\b
x =

-1
2

This solves the system of equations directly, and it is usually the way to do this operation, unless one needs
the inverse for other purposes.)

3 Term Structure of Interest rates
The term structure of interest rates is a relationship between time to maturity and prices of dated future
payments.
Example

A two-year Treasury bond with a face value of 1000 and an annual coupon payment of 8% sells for 982.50. A
one-year T bill, with a face value of 100, and no coupons, sells for 90. Compounding is discrete, annual.

Given these market prices,

1. Find the prices d(0, 1) and d(0, 2) of one dollar received respectively one and two years from now.

2. Find the corresponding interest rates.

7

1. Discount factors (prices): [
982.50 = d(0, 1)80 + d(0, 2)1080
90 = d(0, 1)100

]
Solving these equations we find prices [

d(0, 1) = 0.9
d(0, 2) = 0.84

]
2. and interest rates [

r(0, 1) = 11%
r(0, 2) = 9%

]
How is this example calculated with a matrix tool?
Define the vector of discount factors

d =
[

d(0, 1)
d(0, 2)

]
the set of cash flows

C =
[

80 1080
100 0

]
and the set of bond prices

B =
[

982.50
90

]
The set of bond prices satisfies

B = Cd′

which means we can find d as

d′ = C−1B =
[

80 1080
100 0

]−1 [
982.50
90

]
=

[
0.9
0.84

]
> C=[80 1080; 100 0]
C =

80 1080
100 0

2> B=[982.5;90]
B =

982.500
90.000

> d=inv(C)*B
d =

0.90000
0.84306

Example
You have estimated spot interest rates as follows:

Year Spot Rate, Percent
1 r(0, 1) = 5.00
2 r(0, 2) = 5.40
3 r(0, 3) = 5.70
4 r(0, 4) = 5.90
5 r(0, 5) = 6.00

Compounding is discrete, annual.

8

1. What are the discount factors for each date (that is, the present value of $1 paid in year t)?

2. What are the forward rates for each period?

3. Calculate the prices of the following Treasury notes. Assume they pay interest once a year, and have face
values of 100.

(a) 5 percent, 2-year note
(b) 5 percent, 5-year note
(c) 10 percent, 5-year note

4. Compare the duration of the two five year bonds.

Discount factors and forward prices

Year r(0, t) d(0, t) f(0, t − 1, t)
1 5.0 1

(1.05) = 0.952 5.0%

2 5.4 1
(1.054)2 = 0.900 (1.054)2

(1.05) − 1 = 5.8%

3 5.7 1
(1.057)3 = 0.846 (1.057)3

(1.05)(1.058) − 1 = 6.3%

4 5.9 1
(1.059)4 = 0.795 (1.059)4

(1.05)(1.058)(1.063) − 1 = 6.5%

5 6.0 1
(1.06)5 = 0.747 (1.06)5

(1.05)(1.058)(1.063)(1.065) − 1 = 6.4%

Prices of coupon bonds, assuming a face value of 100.

1. 5%, 2 years:
PV = 0.05 · 0.952 + 1.05 · 0.9 = 99.279

2. 5%, 5 years:

PV = 0.05 · 0.952 + 0.05 · 0.9 + 0.05 · 0.846 + 0.05 · 0.795 + 1.05 · 0.74 = 95.934

3. 10%, 5 years

PV = 0.10 · 0.952 + 0.10 · 0.9 + 0.10 · 0.846 + 0.10 · 0.795 + 1.10 · 0.747 = 117.14

Now, here is how this is done in a matrix tool:
Discount factors:

> r=[5 5.4 5.7 5.9 6]/100
r =

0.050000 0.054000 0.057000 0.059000 0.060000
> t=1:5
t =

1 2 3 4 5
> d=(1+r).^(-t)
d =

0.95238 0.90016 0.84679 0.79509 0.74726
> f(1)=r(1);
> for i=2:5
> f(i) = ((1+r(i))^i)/((1+r(i-1))^(i-1))-1;
> endfor
f =

0.050000 0.058015 0.063026 0.065023 0.064009

9

Calculating bond prices:

> b=[5 105 0 0 0]*d’
b = 99.279
> b=[5 5 5 5 105]*d’
b = 95.934
>b=[10 10 10 10 110]*d’
b = 117.14

Calculating duration

> C1=[5 5 5 5 105]
C1 =

5 5 5 5 105
> B1=C1*d’
B1 = 95.934
> Dur1 = 1/B1 * (t.*C1)*d’
D1 = 4.5310
> C2=[10 10 10 10 110]
C2 =

10 10 10 10 110
> B2 = C2*d’
B2 = 117.14
> Dur2 = 1/B2 * (t.*C2)*d’
Dur2 = 4.2318

Note the use of the element by element multiplication .* in this calculation.
Example

A 10%, two year bond is traded at a price of 90. The current one year spot rate is r(0, 1) = 12% (with
discrete, annual compounding).

1. Determine the duration and convexity of the bond, using both the full term structure and the Macaulay
style calculations.

First need to find the two year spot rate
90 = 10d1 + 110d2

d1 = 1
1 + 0.12 = 0.89286

d2 = 90 − 10d1

110 = 0.73701

r2 = 0.16483

Here are some of the calculation in a matrix tool

> C=[10 110]
C =

10 110
> r(1)=0.12
r = 0.12000
> d(1)=1/(1+r(1))
d = 0.89286
> d(2)=(90-10*d(1))/110
d =

10

0.89286 0.73701
> d=d’
d =

0.89286
0.73701

> BondPrice=C*d
BondPrice = 90
> r(2)=d(2)^(-1/2)-1
r =

0.12000 0.16483
> y = irr([-BondPrice C],0)
y = 0.16249x
> checkprice=C(1)/(1+y)+C(2)/(1+y)^2
checkprice = 90

We calculate duration using the two definitions

> Duration=1/BondPrice * (1*d(1)*C(1) + 2*d(2)*C(2))
Duration = 1.9008
> Duration=1/BondPrice * (1*C(1)/(1+y) + 2*C(2)/((1+y)^2))
Duration = 1.9044

Using the term structure we find duration as
D = 1.9008

using the Macaulay definition we find
D = 1.9044

Thus, not a major difference.
We also calculate the convexity for the two definitions

> Cx=1/BondPrice * 1/(1+y)^2 * ((1+1)*d(1)*C(1) + (2+2^2)*d(2)*C(2))
Cx = 4.1463
> Cx=1/BondPrice * 1/(1+y)^2 * ((1+1)*C(1)/(1+y) + (2+2^2)*C(2)/(1+y)^2)
Cx = 4.1570

Again, not a major difference with the two methods of calculating
Consider a second version of the matrix calculations, with slighly more compact use of notation in the calcu-

lations.

> C=[10 110]
C =

10 110
> r=[0.12]
r = 0.12000
> d=(1+r)^(-1)
d = 0.89286
> d(2)=(90-10*d(1))/110
d =

0.89286 0.73701
> r=d.^(-1./t)-1
r =
0.12000 0.16483

> B=C*d’

11

B = 90
> y=irr([-B C])
y = 0.16249
8> D=1/B*(t.*C)*d’
D = 1.9008
> DMc = 1/B* (t.*C)*((1+y).^(-t))’
DMc = 1.9044
> Cx = 1/B*(1/(1+y))*((t+t.^2).*C)*d’
Cx = 4.8200
> Cx = 1/B*(1/(1+y))*((t+t.^2).*C)*((1+y).^(-t))’
Cx = 4.8324

12

	Matrix handlers (matlab, scilab, octave, etc)
	Linear Algebra
	Basic matrix operations
	Arithmetic Matrix Operations

	Term Structure of Interest rates

