The expected returns of ESG excluded stocks. Shocks to firms costs of capital? Evidence from the Worlds' largest fund

Erika Berle, Wanwei (Angela) He and Bernt Arne Ødegaard

Oct 2022

Overview

Research Issue

Literature

- Our Analysis Preview
- The oil fund and its exclusionsData
- 5 Exclusion Portfolio
 - Constructing the exclusion portfolio
 - Value evolution
 - Performance Evaluation
- 6 Firm Reactions to exclusions
 - Revoking exclusions why
 - Cost of improving ESG
 - Benefits from cheaper capital
 - Exclusion revoked selection problems?
 - Post-Exclusion portfolio

Conclusion

Research issue

- ESG Environmental, Social and Governance aspects of corporate decisions.
- Institutional investors unwilling to invest in "bad" ESG firms.
- Of interest: Consequences of ESG-based portfolio exclusions on the expected returns of firms subject to exclusions?
- Theory: Tradeoff ESG/Cost of Capital
- Use: exclusions by the worlds largest fund.
 - What are the returns of the portfolio of excluded firms? What are the implications for cost of capital?
 - Are firms reacting to their exclusions? With consequences for cost of capital?

Exclusions in asset allocation

- Institutional investors
 - Need an opinion on the ESG characteristics of potential entrants to their portfolio
 - Dealing with low ESG ranking firms:
 - Dialogue the most common. Arguably a better way of achieving change
 - Exclusion: a reaction of last resort

Literature

- Equilibrium models tradeoff ESG/Cost of Capital Pástor et al. (2021) Pedersen et al. (2021)
- Uncertainty of ESG ranking : Muddle the tradeoff (Avramov et al., 2022)
- Empirically, cost of equity capital decreases with ESG quality Chava (2014), Ng and Rezaee (2015), Breuer et al. (2018)
- Institutional portfolios are returns decreasing in quality of the funds ESG (Signing on to UN's Principles for Responsible Investment (PRI))?

Hedge funds \rightarrow YES (Liang et al., 2022)

Mutual funds \rightarrow Green-washing (Kim and Yoon, 2020)

Problem: Institutional portfolios additional layer

"Sin stocks"

- Booze, Guns, Tobacco \rightarrow outperform (Hong and Kacperczyk, 2009).
- Environment (Chava, 2014)
- Carbon (Bolton and Kacperczyk, 2021)

Literature - ctd

- Analysis of the oil fund's exclusions
 - Event studies. (Atta-Darkua, 2020), (Eriksen et al., 2020)
 - Long term performance of excluded portfolio. (Hoepner and Schopohl, 2018)

Our Analysis – Preview

Construct portfolio of excluded firms.

- Does the portfolio have "too high" returns (alpha)?
 → Yes
- Is this due to short-term overreactions, or changes to long term cost of capital
 - ightarrow It is the long term cost of capital

After firms get on the exclusion list

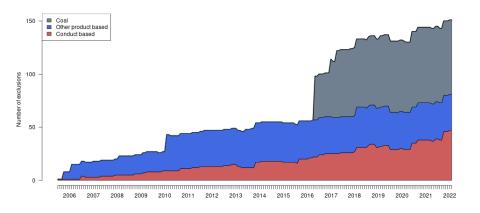
• Are firms happy with their high cost of capital?

 \rightarrow No, they try get their exclusions revoked to get back to a lower cost of capital.

• If a firm's exclusion is revoked, what happens to cost of capital? \rightarrow It Falls

Norway's GPFG (The Oil Fund)

- World's largest SWF. Market value of equity 1 trillion USD at the end of 2021.
- "Near index fund".
- Exclusions handled by external "Council of Ethics", established 2004.
 - 2004-2021: 189 firms in total excluded, shorter or longer time periods.
 - $\bullet\,$ At yearend 2021, fund invested in $\approx\,10$ thousand companies
 - $\bullet \ \rightarrow \text{exclusions are truly exceptional}$

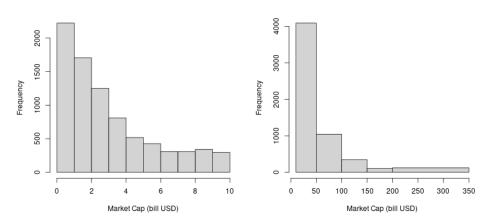

Data

The reasons for exclusions

Exclusion reasons	Events
Conduct	67
Environmental damage	28
Individuals' rights in war or conflict	12
Violation of human rights	12
Environmental damage / Violation of human rights	4
Violation of ethical norms	5
Greenhouse gas emissions	4
Gross corruption	2
Product	122
Coal or coal-based energy	75
Weapons	26
Tobacco	21

Data

The number of exclusions

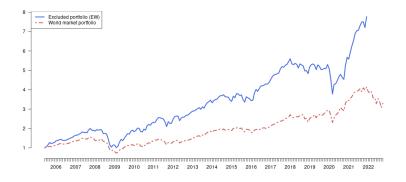


Data

Equity data - Size distribution

B.1: Mkt Cap \leq 10 bill USD

B.2: Mkt Cap > 10 bill USD


Construction Exclusion Portfolio

The exclusion portfolios represent the expected returns of stocks with low ESG rankings.

- Firms enter portfolio month after exclusion
- If exclusion revoked, firms leave exclusion portfolio.

Value evolution - exclusion portfolio vs market

- Exclusion portfolio perform better
- However, exclusion portfolio seem more exposed to crises ('08 and '20 covid)

Cumulative returns of equally weighted exclusion and global market portfolios

Testing for performance

- Investigate whether the exclusion portfolio has higher/lower returns than it "should have".
- \rightarrow Estimate the "alpha," the risk-adjusted excess return. (Return that can not be explained by an asset pricing model).
- Asset pricing model: Fama-French international five factor model (but do check alternatives)

$$(r_{p,t} - r_{f,t}) = \alpha + \beta(r_{m,t} - r_{f,t}) + b^{SMB}SMB_t + b^{HML}HML_t + b^{RMW}RMW_t + b^{CMA}CMA_t + \varepsilon_{p,t},$$

Estimates of alpha for (EW) Exclusion Portfolio

	(1)	(2)	(3)	(4)
Alpha	0.004***	0.004**	0.004***	0.005***
	(0.002)	(0.002)	(0.002)	(0.002)
Rm-Rf	0.961***	1.021***	0.993***	0.962***
	(0.040)	(0.049)	(0.042)	(0.049)
SMB	0.173		0.178	0.177
	(0.115)		(0.115)	(0.123)
HML	0.467***		0.310***	0.224***
	(0.115)		(0.074)	(0.089)
RMW	0.155			
	(0.156)			
СМА	-0.257			
	(0.233)			
WML				-0.138^{***}
				(0.076)
Annualized Alphas(percent)	5.170	4.420	5.220	5.980
Adj. R ²	0.809	0.788	0.808	0.813
Berle, He, Ødegaard	Expected returns of ES	G excluded stocks	Oct 20	22 15/3

Estimates of alpha for Exclusion Portfolio

- Alpha: > 5% in annual terms economically and statistically significant
- The exclusion portfolio substantial higher returns than it "should have"
- Finding robust to
 - asset pricing model
 - weighting scheme (equal, value weighted)
 - subportfolios: reason for exclusion, country (US).

Conclude:

The Excluded firms have a return premium.

Deconstructing alpha

Potential Explanations of the high alpha (5%)

- Short term price pressure from exclusion
- Changes to long term cost of capital

Argue \rightarrow The alpha too high to be explained by short term price corrections following an one-time price fall (event study return) in the region of 1.5 percent

Conclude:

Cost of capital has a substantial (bad) ESG premium.

Firm's reactions

How do firms react when they are excluded?

- No reaction.
- Reputational issue, some action in the press, but no real changes to firm's operations (green-washing).
- Firms act to reverse the exclusion.

Revoking exclusions

Firms remove cause of exclusions \rightarrow Exclusions revoked Exclusions revoked

Cause	no
Change of product mix	11
Cease of activity	7
Sale of subsidiary	4
Other reasons	6
Total	28

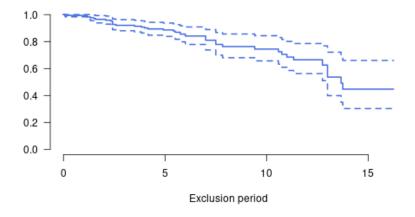
Revoking exclusions - analysis

Actions to improve ESG leading to exclusion revoked

 \rightarrow Endogenous action by firms

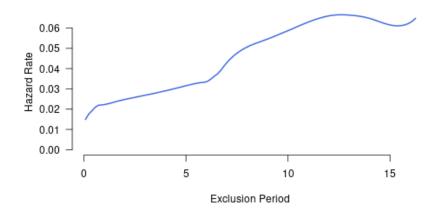
Trading off

- Cost of improving ESG (Cause of exclusion)
- Benefits from a lower cost of capital (cheaper to raise capital)


Motivate empirical investigations – proxies

- Cost ESG score when excluded.
- Benefits
 - Capital needs

(Revenue increase \rightarrow Need for scale investments)


Actual capital raising

Panel A. Survival curve

Expected returns of ESG excluded stocks

Panel B. Instantaneous hazard curve (smoothed)

Contributions to survival of exclusion

	(1)	(2)	(3)	(4)
ESG Score	-0.03***	-0.03***	-0.02**	-0.03**
	(0.01)	(0.01)	(0.01)	(0.01)
Ind(Conduct)		0.85**		0.98***
		(0.39)		(0.44)
In(Mkt Cap)			-0.05	-0.11
			(0.09)	(0.10)
AIC	219.27	217.21	221.05	218.16
R ²	0.03	0.06	0.04	0.07
Max. R ²	0.77	0.77	0.77	0.77
Num. events	28	28	28	28
Num. obs.	150	150	150	150
PH test	0.47	0.76	0.55	0.68

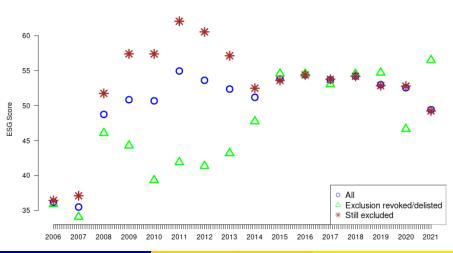
***p < 0.025; **p < 0.05; *p < 0.1

Interpreting survival analysis

Explanatory variables:

Of interest:

• ESG score when excluded - (negative coefficient)


 \rightarrow Low ESG score when entering exclusion portfolio \rightarrow lower time till exit.

Possible interpretation: Cost of improving ESG low when starting from a low base.

Controls:

- Conduct based exclusion dummy (easier to fix conduct based than product based reasons for exclusion)
- Firm Market Capitalization

ESG Scores for firms with/without exclusion revoked

Benefits from cheaper cost of capital

Higher likelihood of raising capital - increased benefits?

Higher Revenue – Higher investment needs

To investigate:

Probit - Model probability of having exclusions revoked as a function of

- Revenue growth negative relation:
 High revenue growth → higher probability of exclusion revoked.
- Earnings growth no relation

Probit estimation of determinants of discontinuation of exclusion

	(1)	(2)	(3)	(4)
(Intercept)	-3.53***	-2.26***	-2.24***	-3.38***
	(1.12)	(0.13)	(0.13)	(1.13)
Growth EPS	-0.02	-0.02		
	(0.02)	(0.02)		
Ind(Conduct)	0.69***	0.66***	0.52***	0.54***
	(0.19)	(0.19)	(0.19)	(0.19)
ln(Mkt Cap)	0.06			0.05
	(0.05)			(0.05)
Growth Revenue			0.46*	0.45*
			(0.26)	(0.26)
Log Likelihood	-97.86	-98.51	-99.08	-98.55
Num. obs.	981	981	969	969

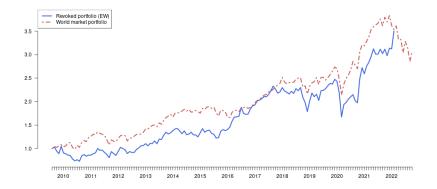
Revoking exclusions

Actual equity deals - raising new equity capital

• High probability of raising capital after exclusion revoked (albeit on a small sample).

	Firms raising capital		
	Number	Percent	
Firms still excluded	56	37.1	
Firms with exclusion revoked	11	57.9	

Exclusion revoked \rightarrow Selection problem?



Exclusion revoked \rightarrow Selection problem?

- The Exclusion portfolio firms only in portfolio while excluded.
- Remove firms post exclusion. Selection problem?
 - What is the return on the portfolio of post-excluded firms?
 - What if we keep firms in the portfolio even if the exclusion is revoked?

The Post-Exclusion portfolio

Firms enter the post-exclusion portfolio month after exclusion is revoked.

Cumulative returns for the Post-Exclusion Portfolio

Berle, He, Ødegaard

Expected returns of ESG excluded stocks

Estimates of alpha for the post-exclusion portfolio

	(1)	(2)	(3)	(4)
Alpha	-0.002	-0.002	-0.001	0.000
	(0.003)	(0.003)	(0.003)	(0.003)
Rm-Rf	1.080***	1.085***	1.061***	1.033***
	(0.077)	(0.073)	(0.073)	(0.076)
SMB	0.335		0.250	0.245
	(0.221)		(0.209)	(0.208)
HML	0.271		0.235*	0.128
	(0.215)		(0.123)	(0.144)
RMW	0.326			
	(0.292)			
СМА	0.107			
	(0.345)			
WML				-0.192
				(0.136)
Annualized Alphas(percent)	-2.230	-1.970	-0.860	0.300
Adj. R ²	0.604	0.596	0.606	0.609
Berle, He, Ødegaard	Expected returns of E	SG excluded stocks	Oct 20)22 32 / 34

Conclusion

Prime contributions:

- Sheer *magnitude* of the return difference linked to ESG.
- Speed by which the increased cost of capital affects returns.
- *dynamics* of corporate reactions to exclusion.

Interpretation

- Low quality ESG firms provide exceptionally high returns
- $\bullet \to$ The cost of capital for new investments for low quality ESG firms also exceptionally high.
- \rightarrow To survive most low quality ESG firms have to move towards better quality ESG ("greener investments") to lower their cost of capital
- From society's point of view:
 - \rightarrow This is the desired outcome.
- To ponder:
 - Would this have happened without the exclusions?
 - Have the owners of the GPFG lost out?

References

- Vaska Atta-Darkua. Corporate ethical behaviours and firm equity value and ownership: Evidence from the GPFG's ethical exclusions. Available at SSRN 3388868, 2020.
- Doron Avramov, Si Cheng, Abraham Lioui, and Andrea Tarelli. Sustainable investing with ESG rating uncertainty. *Journal of Financial Economics*, 145(2, Part B): 642–664, 2022. doi: 10.1016/j.jfineco.2021.09.009.
- Patrick Bolton and Marcin Kacperczyk. Do investors care about carbon risk? *Journal of Financial Economics*, 142(2):517–549, 2021. doi: 10.1016/j.jfineco.2021.05.008.
- Wolfgang Breuer, Torbjörn Müller, David Rosenbach, and Astrid Salzmann. Corporate social responsibility, investor protection, and cost of equity: A cross-country comparison. *Journal of Banking and Finance*, 96:34–55, 2018. doi: 10.1016/j.jbankfin.2018.07.018.
- Sudheer Chava. Environmental externalities and cost of capital. *Management Science*, 60(9):2223–2247, 2014.
- Sondre Hansen Eriksen, Snorre Lindset, Quynh Trang Nguyen, and Marie Skara. Market reactions to ESG announcements: Evidence from a \$1 trillion fund. Available at SSRN 3640447, September 2020.
- Andreas G F Hoepner and Lisa Schopohl. On the price of morals in market: An empirical study of the Swedish AP-funds and the Norwegian government pension fund. *Journal of Business Ethics*, 151:665–692, 2018.

Harrison Hong and Marcin Kacperczyk. The price of sin: The effects of social norms on markets. *Journal of Financial Economics*, 93(1):15–36, 2009. doi: 10.1016/j.jfineco.2008.09.001.

Conclusion

- Soohun Kim and Aaron Yoon. Analyzing active fund managers' commitment to ESG: Evidence from the United Nations principles for responsible investment. *Management Science*, 2020. Forthcoming.
- Hao Liang, Lin Sun, and Melvyn Teo. Responsible Hedge Funds. *Review of Finance*, 05 2022. doi: 10.1093/rof/rfac028.
- Anthony C Ng and Zabihollah Rezaee. Business sustainability performance and cost of equity capital. *Journal of Corporate Finance*, 34:128–149, 2015.
- Lúboś Pástor, Robert F Stambaugh, and Lucian A Taylor. Sustainable investing in equilibrium. *Journal of Financial Economics*, 142(2):550–571, 2021. doi: 10.1016/j.jfineco.2020.12.011.
- Lasse Heje Pedersen, Shaun Fitzgibbons, and Lukasz Pomorski. Responsible investing: The ESG-efficient frontier. *Journal of Financial Economics*, 142(2):572–597, 2021. doi: 10.1016/j.jfineco.2020.11.001.