PROBLEM SET: Discounting

Exercise 1. Project [2]
An investment project offers the following pattern of cash flows.

Time (t)	Cash Flow $\left(C_{T}\right)$
0	$-\$ 1000$
1	500
2	750
3	250

The appropriate discount rate is 10%.

1. What is the NPV of the investment project?

Exercise 2. Florida State Lottery (RWJ 4.6) [2]
You have won the Florida state lottery. Lottery officials offer you the choice of the following alternative pay-outs:
a) $\$ 10,000$ one year from now.
b) $\$ 20,000$ five years from now.

1. Which should you choose if the discount rate is
(a) 0%.
(b) 10%.
(c) 20%.
2. Which rate makes the options equally attractive to you?

Exercise 3. Project [3]
A project is planned to give the following cash flows for the next 4 years:
$\left.\begin{array}{rlrrr}t & = & 1 & 2 & 3 \\ C_{t} & = & 400 & 450 & 400\end{array}\right) 100$

The project requires an initial investment of 1000. The relevant (annually compounded) interest rate is 14%. Disregard taxes.

1. Should you invest in this project?

Exercise 4. [2]
The interest rate with semiannual compounding is $r_{n}=10 \%$.

1. Determine the equivalent interest rate with continous compounding.

Exercise 5. Compounding [2]
A bank quotes you a rate of interest of 14% per annum with quarterly compounding. What is the equivalent annual rate with

1. continuous compounding?
2. annual compounding?

Exercise 6. Compounding. (BM 3.16) [4]
For an investment of $\$ 1,000$ today, the Tiburon Finance Company is offering to pay you $\$ 1,600$ at the end of 8 years.

1. What is the annually compounded rate of interest?
2. What is the continuously compounded rate of interest?

Exercise 7. Savings [3]
Suppose you will need 50,000 ten years from now. You plan to make seven equal annual deposits beginning three years from today in an account that yields 11% compounded annually. How large should the annual deposit be?

Exercise 8.

Recall the formula for calculating the present value for a constant annuity

$$
P V=C\left[\frac{1}{r}-\frac{1}{r(1+r)^{T}}\right]
$$

where the term in brackets is the annuity factor.
A growing annuity is an annuity where the cash flows increases by a growth rate g each year.
Show that the corresponding annuity factor for a growing annuity is

$$
\left[\frac{1}{(r-g)}\right]\left[1-\left[\frac{(1+g)^{T}}{(1+r)^{T}}\right]\right]
$$

for a T period annuity, with growth rate g, discount rate r.

Empirical

Solutions

PROBLEM SET: Discounting

Exercise 1. Project [2]

1. Calculating the present value

$$
P V=\frac{500}{1.10}+\frac{750}{(1.10)^{2}}+\frac{250}{(1.10)^{3}}=455+620+188=1263
$$

and then subtracting initial cost gives net present value

$$
N P V=P V-C_{0}=1263-1000=263
$$

Exercise 2. Florida State Lottery (RWJ 4.6) [2]

1. Calculate PV as:
a): $P V_{a}=\frac{10,000}{1+r}$
b): $P V_{b}=\frac{20,000}{(1+r)^{5}}$
(a) Compare:
i. $0 \%: P V_{a}=10,000, P V_{b}=20,000$.
ii. $10 \%: P V_{a}=9,090, P V_{b}=12,418$.
iii. $20 \%: P V_{a}=8,333, P V_{b}=8,037$.
(b) You are indifferent if they have the same present values: Solve for r in:

$$
\begin{gathered}
P V_{a}=P V_{b} \\
\frac{10,000}{1+r}=\frac{20,000}{(1+r)^{5}} \\
r=18.921 \%
\end{gathered}
$$

Exercise 3. Project [3]
Calculate NPV

$$
\begin{array}{rl}
\hline t & = \\
0 & 1 \\
\hline
\end{array} 2^{2} \begin{gathered}
3 \\
C_{t}
\end{gathered}=
$$

NPV positive, do the investment.
Exercise 4. [2]
This corresponds to acontinuous compounding of

$$
r=n \ln \left(1+\frac{r_{n}}{n}\right)=2 \ln \left(1+\frac{0.1}{2}\right)=9.78 \%
$$

Exercise 5. Compounding [2]

1. Are given: With quarterly compounding, $r_{4}=14 \%$. Want to find the equivalent continuous compounding

$$
\begin{gathered}
e^{r}=\left(1+\frac{0.14}{4}\right)^{4} \\
r=4 \ln \left(1+\frac{0.14}{4}\right)=13.761 \%
\end{gathered}
$$

2. Annual compounding

$$
\begin{gathered}
(1+r)=\left(1+\frac{0.14}{4}\right)^{4} \\
r=\left(1+\frac{0.14}{4}\right)^{4}-1=14.752 \%
\end{gathered}
$$

Exercise 6. Compounding. (BM 3.16) [4]

1. First, look at the case of annual compounding:

$$
\begin{gathered}
F V=P V \cdot(1+r)^{8} \\
\Rightarrow \frac{F V}{P V}=(1+r)^{8} \\
\Rightarrow\left(\frac{F V}{P V}\right)^{-8}=(1+r) \\
\Rightarrow\left(\frac{F V}{P V}\right)^{-8}-1=r \\
\Rightarrow\left(\frac{1600}{1000}\right)^{-8}-1 \approx 0.06 \\
r \approx 6 \%
\end{gathered}
$$

2. Next, look at continuous compounding.

$$
\begin{gathered}
F V=P V \cdot e^{r t} \\
\Rightarrow \frac{F V}{P V}=e^{r t} \\
\Rightarrow \ln \left(\frac{F V}{P V}\right)=r t \\
\Rightarrow r=\frac{1}{8} \cdot \ln \left(\frac{F V}{P V}\right) \\
\quad r \approx 5.87 \%
\end{gathered}
$$

Exercise 7. Savings [3]
Remember the annuitiy formula.

$$
P V=C A_{n=7, r=0.11}
$$

where A is the annuity factor.

$$
A=4.712
$$

(Either from annuity tables or by calculation)

Since 50,000 is a FV, find its present value

$$
\begin{gathered}
\frac{50,000}{1.11^{7}}=C 4.712 \\
C=\frac{24,083}{4.712}=5,111
\end{gathered}
$$

Exercise 8.

Time	1	\cdots	T	$T+1$	\cdots	Value	
Growing Perpetuity from							
onwards	C	\cdots	$C(1+g)$	$C(1+g)^{2}$	\cdots	$=$	$C \cdot\left[\frac{1}{r-g}\right]$
-Perpetuity							
from T+1 onwards	0	\cdots	0	$C(1+g)^{T}$	\cdots	$=$	$C(1+g)^{T} \cdot\left[\frac{1}{(1+r)^{T}} \frac{1}{r-g}\right]$
Annuity	C	\cdots	C	0	\cdots	$=$	$C \cdot\left[\frac{1}{r-g}-\frac{(1+g)^{T}}{(1+r)^{T}} \frac{1}{r-g}\right]$

