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1 Overview of lecture
Perspective – Sharpe’s fundamental law
What are ways in which investment managers are active?
Premise: Forecasting ability

• Selection

– Treynor-Black
– Black-Litterman

• Timing

2 Introduction
Hard to define what is an active portfolio.
A common way of thinking is that it is a portfolio that deviates from a passive investment strategy, such as
an index fund, or fixed weights equity/fixed income.
Necessary condition for trying an active strategy:
Forecasting ability

• in the time dimension (market timing), or

• in the crossection (asset selection).

For active strategies to generate superior performance must either be able to

• forecast future performance, choose asset with the highest expected return, or

• identify mispricing (alpha) in crossection. Buy underpriced stock/sell overpriced stock.
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3 Theory
Often quoted starting point: Sharpe (1991)’s famous “arithmetic of active management”:

“it must be the case that
(1) before costs, the return on the average actively managed dollar will equal the return on the
average passively managed dollar, and
(2) after costs, the return on the average actively managed dollar will be less...
These assertions will hold for any time period. Moreover, they depend only on the laws of
addition, subtraction, multiplication and division. Nothing else is required.”

However, Pedersen (2018) arguest that this is a too pessimistic view. It presumes that this is a zero-sum
game. For example, Pedersen (2018) argues that the service of financiers to e.g. add to traded assets by
doing IPO’s, and other financial engineering, adds value to the market, making it a positive sum game.

4 Market Timing
Market Timing. Switch from the market to the risk free asset if you think E[r̃mt < rF t], and the other way
if E[r̃mt > rF t].
How will you determine whether your forecasting ability actually generates performance?
What is special about the payoff on a market timers portfolio?
Take the extreme case. What if the portfolio manager is always correct. He knows when rmt > rF t and
rmt < rF t. Then, if rmt > rF t he invests 100% in market, otherwise, if rmt < rF t, he invests 100% in rF .

-
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Payoff

This is the payoff on a call option on the market with exercise price rm = rf . So, the value of the timing
ability equals the cost of a call option on the market. (an index option).

Timing ability: Ability to create a call option that
costs less than the one offered in the market.

How do you measure superior timing ability? Notice that the payoff on the market timer’s portfolio is a
nonlinear function of the excess return on the market.
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Run regressions of the general form:

rp − rf = αp + βp(rm − rf ) − γpmin(0, rm − rf ) + ϵp

We conclude that there is timing ability if γp > 0.
(See performance measurement lecture for other regression specifications).

5 Selection in the market model
To illustrate selection we conside selection in the context of the market model.
Recall the model:

r̃i = αi + βir̃m + ε̃i

If a stock is priced correctly, αi = 0.

βm = 1

Errors uncorrelated across assets
cov(εi, εj) = 0 ∀ i ̸= j

For a portfolio of n stocks, need to estimate 3n + 2 parameters.
(αi, βi, σi + σm, E[rm − rf ]
An analyst will in this framework provide estimates of αi. For a given stock, if the alpha (αi) is different
from zero, will use that to take active positions.
αi < 0: Sell
αi > 0: Buy

This is the setting of the Treynor-Black model, which provides a recipe for creating a portfolio reflecting
the views given by the alpha estimates (Bodie, Kane, and Marcus, 2021)

1. Macroeconomic analysis is used to estimate the risk premium and risk of the market index.

2. Statistical analysis is used to estimate the beta coefficients of all securities and their residual variances,
σ2(ei).

3. The portfolio manager uses the estimates for the market model risk premium and the individual betas
to find the expected return absent any contribution from security analysis

4. Security specific alphas are found using security valuation models (stock pricing). These alphas sum-
marize the additional premium due to the private information (the stock valuation)

Armed with thesee alphas there is an optimization procedure (Bodie et al., 2021)

1. Compute the initial postion of each security in the active portfolio as w0
i = αi

σ2(ei) .

2. Scale those initial positions to force portfolio weights to sum to one by dividing by their sum, that is
wi = w0

i∑
i

w0
i

.

3. Compute the alpha of the active portfolio αA =
∑

i wiαi.

4. Compute the residual variance of the active portfolio σ2(eA) =
[

αA/σ2(eA)
E[rm]/σ2

m

]
.

5. Compute the beta of the active portfolio βA =
∑

i wiβi.
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6. Adjust the initial position in the active portfolio w∗
A = w0

A

1+(1−βA)w0
A

7. Note the optimal risky portfolio now has weights w∗
m = 1 − w∗

A; w∗
i = w∗

Awi.

8. Calculate the risk premium of the optimal risky portfolio from the risk premium of the index portfolio
and the alpha of the active portfolio.

E[Rp] = (w∗
m + w∗

A) E[RM ) + w∗
AαA

Notice that the beta of the risky portfolio is w∗
m + w∗

AβA because the beta of the index portfolio is 1.

9. Compute the variance of the optimal risky portfolio from the variance of the index portfolio and the
residual variance of the active portfolio.

σ2
P = (w∗

m + w∗
AβA)2σ2

m + (w∗
Aσ(eA))2

Exercise 1.
We consider an active portfolio calculation example that corresponds to an example in Chapter 8 of Bodie, Kane
and Marcus.
Use the S&P 500 as a market index. Consider the six stocks Walmart(WMT),Target (TGT), VeriZon (VZ),
AT&T(T), Ford(F), General Motors(GM).
Using monthly returns for the period after 2010, estimate the parameters of the Market Model.
Solution to Exercise 1.
Market model regressions

eri = αi + βierm + εi

Show R code
Preparatory
f i r s t_date <− as . Date ( "2010−01−01" )
t i c k e r s <− c ( "WMT" , "TGT" , "VZ" , "T" , "F" , "GM" )
companies <− c ( "Walmart " , " Target " , " Ver iZon " , "ATT" , " Ford " , "GM" )

Get data
Step 1 Risk free rate
t r e a s_1m <− getSymbols ( "DGS1MO" , s r c="FRED" , auto . a s s i g n=FALSE)
names ( t r e a s_1m) <− " t r e a s_1m"
t r e a s_1m <− na . omit ( t r e a s_1m)

# p i c k l a s t o b s e r v a t i o n i n a g i v e n month
Rf <− t r e a s_1m[ endpo i n t s ( t r e a s_1m, "month" ) , ]
names ( Rf ) <− "Rf "
Rf <− Rf/1200 # don ’ t want a n n u a l i z e d p e r c e n t a g e i n t e r e s t r a t e s , s t r a i g h t monthly ones
index ( Rf ) <− as . yearmon ( index ( Rf ) )
Rf <− na . omit ( l a g ( Rf , 1 ) ) # tha t l a s t o b s e r v a t i o n shou l d be matched wi th r e t u r n s the nex t month
Rf <− window ( Rf , s t a r t=as . yearmon ( f i r s t_date ) )

Step 2 Excess Stock returns. Create a function that takes care of the subtraction of the risk free rate
get_s t o ck_e x c e s s_ r e t u r n s <− f unct ion ( t i c k e r ){

data <− getSymbols ( t i c k e r , auto . a s s i g n=FALSE , from=f i r s t_date )
d a i l y_p r i c e s <−na . omit ( data [ , 6 ] )
monthly_ r e t u r n s <− month lyReturn ( d a i l y_p r i c e s )
names ( monthly_ r e t u r n s ) <− "monthly_ r e t u r n s "
index ( monthly_ r e t u r n s ) <− as . yearmon ( index ( monthly_ r e t u r n s ) )
data <− merge ( monthly_r e t u r n s , Rf , a l l=FALSE)
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e x c e s s_ r e t u r n s <− data$monthly_r e t u r n s −data$Rf
names ( e x c e s s_ r e t u r n s ) <− " e x c e s s_ r e t u r n s "
re tu rn ( e x c e s s_ r e t u r n s )

}
# use the SP500 as market i n d e x

t i c k e r <− "^GSPC"
erm <− get_s t o ck_e x c e s s_ r e t u r n s ( t i c k e r )
names ( erm ) <− " erm"
summary ( erm )

# Walmart
t i c k e r <− "WMT"
erWMT <− get_s t o ck_e x c e s s_ r e t u r n s ( t i c k e r )
names (erWMT) <− "erWMT"

(The other stocks are similar)
Step 3 Run regressions
data <− merge (erWMT, erm , a l l=FALSE)
regrWMT <− lm ( data$erWMT~data$erm )

(The others similar)

Dependent variable:
erWMT erTGT erVZ erT erF erGM

(1) (2) (3) (4) (5) (6)
erm 0.469∗∗∗ 0.842∗∗∗ 0.444∗∗∗ 0.588∗∗∗ 1.437∗∗∗ 1.454∗∗∗

(0.086) (0.126) (0.085) (0.089) (0.139) (0.140)

Constant 0.005 0.005 0.002 0.001 −0.003 −0.006
(0.004) (0.005) (0.004) (0.004) (0.006) (0.006)

Observations 159 159 159 159 159 149
Adjusted R2 0.153 0.217 0.144 0.211 0.401 0.420
Residual Std. Error 0.046 0.068 0.046 0.048 0.075 0.071

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Calculate

• SD excess return
• Beta
• Systematic risk βiσm

• Unsystematic risk
• Correlation with market

Show calculations for the market and the first company (Walmart)
# t a b l e l i k e pane l A
tab <− matr ix (nrow=7, nco l=5)
rownames ( tab ) <− c ( " i nd ex " , companies )
colnames ( tab ) <− c ( " sd ␣ e x c e s s ␣ r e t " , " beta " , " s y s t " , "SD␣ r e s i d u a l " , " c o r r ␣w␣mkt␣" )

#market
sigmaM <− sd ( erm )
tab [ 1 , 1 ] <− sigmaM
tab [ 1 , 2 ] <− 1
tab [ 1 , 3 ] <− sigmaM
tab [ 1 , 4 ] <− 0
tab [ 1 , 5 ] <− 1
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#walmart
sdretWMT <− sd (erWMT)
alphaWMT <− regrWMT$ c o e f f i c i e n t s [ 1 ]
betaWMT <− regrWMT$ c o e f f i c i e n t s [ 2 ]
resWMT <− regrWMT$ r e s i d u a l s
sigmaWMT <− sd (resWMT)
corWMTm <− cor (erWMT, erm )
tab [ 2 , 1 ] <− sdretWMT
tab [ 2 , 2 ] <− betaWMT
tab [ 2 , 3 ] <− betaWMT∗sigmaM
tab [ 2 , 4 ] <− sigmaWMT
tab [ 2 , 5 ] <− corWMTm

sd excess ret beta syst SD residual corr w mkt
index 0.0429 1.0000 0.0429 0.0000 1.0000

Walmart 0.0505 0.4688 0.0201 0.0463 0.3983
Target 0.0768 0.8416 0.0361 0.0677 0.4707

VeriZon 0.0493 0.4444 0.0191 0.0455 0.3866
ATT 0.0543 0.5879 0.0252 0.0481 0.4648
Ford 0.0970 1.4372 0.0617 0.0749 0.6360
GM 0.0933 1.4536 0.0624 0.0708 0.6511

# t a b l e l i k e pane l B
data <− merge (resWMT,

resTGT ,
resVZ ,
resT ,
resF ,
resGM)

colnames ( data ) <− companies
c o r r <− cor ( data , use=" p a i r w i s e . complete . obs " )
c o r r [ upper . t r i ( co r r , diag=TRUE) ]<−NA
p r i n t ( c o r r )
f i l e n ame <− pas t e0 ( ou td i r , " c o r r e l a t i o n s_ r e s i d u a l s . t e x " )
x t <− x t a b l e ( c o r r [ 2 : 6 , ] , d i g i t s =3)
p r i n t ( xt , f i l e=f i l ename , f l o a t i n g=FALSE)

Calculating some descriptive statistics
data <− merge (erWMT, erTGT , erVZ , erT , erF , erGM , erm , a l l=FALSE)
desc_ s t a t s <− matr ix (nrow=6, nco l=7)
colnames ( desc_ s t a t s ) <− c ( companies , "SP500" )
rownames ( desc_ s t a t s ) <− c ( "mean" , " sd " , "min " , "med" , "max" , "n" )
desc_ s t a t s [ 1 , ] <− colMeans ( data )
desc_ s t a t s [ 2 , ] <− apply ( data , 2 , sd )
desc_ s t a t s [ 3 , ] <− apply ( data , 2 ,min )
desc_ s t a t s [ 4 , ] <− apply ( data , 2 , median )
desc_ s t a t s [ 5 , ] <− apply ( data , 2 ,max)
desc_ s t a t s [ 6 , ] <− apply ( data , 2 , l ength )

Walmart Target VeriZon ATT Ford GM SP500
mean 0.009 0.012 0.005 0.006 0.007 0.007 0.008

sd 0.051 0.078 0.048 0.054 0.095 0.093 0.042
min -0.157 -0.289 -0.118 -0.174 -0.307 -0.312 -0.126
med 0.008 0.006 0.003 0.001 -0.002 0.003 0.013
max 0.148 0.247 0.118 0.207 0.319 0.281 0.127

n 149 149 149 149 149 149 149
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6 Summarizing – active portfolio management
• Perspective – Sharpe’s fundamental law

• Premise of active management: Forecasting, either in time or the crossection.

• Timing: Switching between asset classes based on expected return forecasts.

• Selection: “Stock picing” Over/Underpriced assets
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