The mechanics of discounting, interest rate calculations

Bernt Arne Ødegaard

17 November 2022

1 Summary

1. Method for evaluating current value of stream of future cashflows

Present Value
2. Subtracting present cost

Net Present Value
or: Value added
Future Value

$$
F V_{t}=P V(1+r)^{t}
$$

Present Value

$$
P V=\frac{F V_{t}}{(1+r)^{t}}
$$

Discount factor

$$
d_{t}=1 /(1+r)^{t}
$$

The internal rate of return: the discount rate that makes the $N P V=0$.
Multiple cash flows - present value additive

$$
\begin{gathered}
P V=\sum_{t=1}^{T} \frac{C_{t}}{\left(1+r_{t}\right)^{t}} \\
N P V=P V-C_{0}=\sum_{t=1}^{T} \frac{C_{t}}{\left(1+r_{t}\right)^{t}}-C_{0}
\end{gathered}
$$

A perpetuity: fixed income for each year for the indefinite future.

$$
\begin{gathered}
P V=\sum_{t=1}^{\infty} \frac{C_{t}}{(1+r)^{t}} \\
P V=\frac{C}{r}
\end{gathered}
$$

A growing perpetuity: a fixed income for each year that grows at a constant rate g.

$$
\begin{gathered}
P V=\sum_{t=1}^{\infty} \frac{C_{1}(1+g)^{t-1}}{(1+r)^{t}} \\
P V=\frac{C_{1}}{r-g}
\end{gathered}
$$

An annuity: pays a fixed (constant) amount each year for a specified finite number of years (T).

$$
\begin{aligned}
P V & =\sum_{t=1}^{T} \frac{C}{(1-r)^{t}} \\
& =C\left[\frac{1}{r}-\frac{1}{r(1+r)^{T}}\right]
\end{aligned}
$$

The term $A_{r, T}=\left[\frac{1}{r}-\frac{1}{r(1+r)^{T}}\right]$ is called an annuity factor.
Compounding refers to the frequency with which interest is paid.
Discrete compounding m times a year

$$
\begin{aligned}
& F V_{t}=P V\left(1+\frac{r}{m}\right)^{m t} \\
& P V=F V_{t}\left(1+\frac{r}{m}\right)^{-m t}
\end{aligned}
$$

Continous compounding

$$
\begin{gathered}
F V_{t}=P V\left(e^{r t}\right) \\
P V=F V_{t}\left(e^{-r t}\right)
\end{gathered}
$$

Translating

$$
\begin{gathered}
r=n \ln \left(1+\frac{r_{n}}{n}\right) \\
r_{n}=n\left(e^{\frac{r}{n}}-1\right)
\end{gathered}
$$

