
Time Series

A lecture on time series.



Survey of time series issues

Definition
A time series is a sequence of observations of economic variables,

x1, x2 . . . xt . . . xT

usually sampled at fixed intervals.
Typical intervals: Daily, weekly, monthly, quarterly, annual.
Time imposes ordering.



Examples

Example: Consumer Price Index. What is the relative value of one
unit of currency.



Another example: Stock market index. What is the total value of
an investment in the stock market. Evolution of a stock market
index

Evolution of the S&P 500



Stocks or flows?

Common terminology.
I Stocks measures the value of something at a specific time,
I a flow measures something between two time periods.

The price index is an example of a stock.



Flow example: Inflation
“first differences” of the price indices.

monthly inflation for Norway:

An example: Norwegian Consumer Price Index. First Differences



Convenience: Transformations
Hard to interpret monthly inflation, what is a convenient
transformation?
Example:annual observations.

An example: Norwegian Consumer Price Index. First Differences of
annual data



Typical Problems in Time Series

1. Forecasting.
2. Trend Removal.
3. Seasonal Adjustment.
4. Detection of a Structural Break.
5. Causality–time lags.
6. Distinction between the short and long run
7. Study of agent’s expectations.



Trend Removal.

Evaluation of future values xT+h as a function of current and past
values x1, x2 . . . xT .

ŷT+h = f (y1, y2, . . . yT )

Concerned about the quality of the forecast, depend on to what
the degree the stochastic process governing xt is “regular” as a
function of time.
Also depend on the forecasting horizon. Usually get better
forecasts for small values of h (short horizon).
If the series have a clear trend (see the examples of price indices
and stock indices), may want to remove the trend and analyze the
movements around the trend.



Seasonal Adjustment.

Many variable of economic interest will have strong seasonal
components. For example heating cost will clearly be low in the
summer and high in the winter. Depending on purpose may want
to remove seasonal components.



Detection of a Structural Break.
One of the most important questions we face is determining
whether the economic environment has changed substantially, such
that we have moved into a new regime, which necessitates
re–evaluation of the economic relationships

NOK/EUR exchange rate



Causality–time lags.

Another economic question with obvious policy implications is the
question of whether and how one economic variable influences
another.



Distinction between the short and long run

To what degree are relationships persistent?



Study of agent’s expectations.

If we have data on agent’s forecasts, how accurate are these? Can
agents forecast at all? Are expectations rational?



Categorizing time series tools

Distintuish
1. Adjustment models.
2. Autopredictive models.
3. Explanatory models.



Adjustment models.

Roughly, mechanical models for removing seasonal components
and trends.



Autopredictive models.

Intuitively: “Model–free” forecasting models.

xt = f (xt−1, xt−2, . . .) + et

We work with simple models which merely describe the data.
There is no theory which explains why a particular formulation
describes the data, but for forecasting purposes such a “theoryless”
formulation may often do better than a fully specified economic
model.



Example Autopredictive models - AR

Let yt be the data of interest, and εt be white noise
(E [εt ] = 0, E [ε2t = σ2

ε ], E [εtεs ] = 0 ∀ s 6= t
The simplest time series specification:
autoregressive model of order 1: (an AR(1) process)

yt = µ+ γyt−1 + εt

More general, autoregressive specifications with p terms, AR(p):

yt = µ+
p∑

k=1
γyt−k + εt



Example Autopredictive models - MA

An alternative specification is a Moving Average process (MA(1)):

yt = µ+ εt − θεt−1

Add terms to produce a MA(q) process:

yt = µ+ εt −
q∑

k=1
θkεt−k



Example Autopredictive models - ARMA

A generalization of these models is the autoregressive moving
average (ARMA(p,q)) model

yt = µ+
p∑

k=1
γyt−k + εt + εt −

q∑
k=1

θkεt−k



Issue with autopredictive AR case: Unit root

What is a unit root?
Consider the autoregressive relation

yt = ρyt−1 + εt

where ρ is a constant and εt an error term.
The parameter ρ is the parameter of interest. Note that it has
implications for the type of process on y :
I If ρ > 1 then y is an explosive process.
I If ρ = 1 then y is a random walk.
I If ρ < 1 then y is a stationary process.

It is the case of ρ = 1 which is the borderline case. In this case
(ρ = 1) the process y is said to have a unit root. Another
terminology is to say that y is integrated of order 1.



Issue with autopredictive AR case: Unit root

Testing for unit root
When we test for an unit root, we want to test whether ρ = 1,
because that has implications for how to estimate y .
If ρ = 1, then we want to do estimation using yt − yt−1, (take first
differences), since that is a stationary process, otherwise, if y is not
integrated, we want to do inference on y directly.
Unit Root tests are designed to test the hypothesis ρ = 1, but they
do not have a standard normal distribution



Autopredictive toot: Vector Autoregressions (VAR’s)

Consider testing for Granger causality in a model with two
variables x and y :

yt = c + α1yt−1 + α2yt−1 + β1xt−1β2xt−2 + εt

This is a simple example of an auto-regression, the current value of
a variable is a (linear) function of past values of itself and other
variables.



Autopredictive models - summarizing

“Model-free” in the sense that — not estimating an explicit
economic model,
instread: – exploring possible linear relationships between economic
variables.
Uses of the autopredictive methods
I forecasting.
I generate “stylized facts” that our economic theories should be

able to explain.
Note though: VAR or some other time series model does not
explain any causality or other regularities in the data.



Explanatory models.

Roughly: “Economic” models of relationships between variables.

yt = f (xt ; b) + et

where yt are endogenous variables and xt are exogenous variables.
b are parameters and et are random errors.
If the exogenous varibles xt are only observed at time t and the
errors et are independent of observations at other times, this is a
static model.
But the model can be dynamic, both when
I The exogenous variables xt include past (lagged) values of y ,

yt−1, yt−2, . . ..
I The errors et depend on errors or variables at other times.



Reminder – time series in regressions

yt = Xtb + et

I yt is the outcome of the dependent variable at time t,
I Xt the independent variables at time t,
I et the error term at time t, and
I b the parameters of interest.

The independent variables Xt at time t may also include past
values of yt as well as other variables observed at earlier dates.
We then observe outcomes of yt and Xt for a number of periods
t = 1, . . .T .



Reminder – time series in regressions

Typical problem:
I the error term et will not be independent.

Think of a shock to the economy.
The effects of this shock may very often persist for a time
Because of the ordering that time imposes on the observations, we
expect that errors that are “close” (in time) may well be correlated,
but that errors that are “distant” there will have little correlation.
This imposes some structure on the form of the error covariance
matrix.
The knowledge that we are dealing with a time series allow us to
make assumptions about the form of the covariance matrix of the
error terms.



The Lag operator
Confusing in time series literature: the use of the lag operator.
Suppose our time series is yt .
The lag operator L just shifts the time index one period back

Lyt = yt−1

Lag operator useful because can do algebra using the lag operator.
For example

L(Lyt) = L(yt−1) = yt−2

This will be written

L2yt

Lag operator – way of transforming time series following the rules
of multiplication and addition.
Compactly express complicated time series models.
For example

xt = (aL + bL2)xt = axt−1 + bxt−2



Plotting

First thing to do with any time series you are using:
Plot it to see if there are some special features.
both “get a feel for the data”, and
spot potential data problems,
danger: seeing patterns that may not be there



Example: GBP/NOK



Univariate time series

Go through some of the standard concepts in autorpredictive
modelling of univariate time series

xt = f (xt−1, εt−1, . . .)

Can at times map these “reduced form” specifications to actual
economic models (typically called structural models).
Definition: Univariate time series modelling of process {xt}
– Modelling and predicting xt+1 as a function of past values
xt , xt−1, · · · and past and current errors ut , ut−1, · · · and ut+1.



Stationarity

First question is: Is a series stationary?
Roughly, stationarity means that the stochastic relationship
between one observations and the next does not depend on when
the observation is made.
Stationarity can be formally defined in various ways.
Strict stationarity
Let xti be the observation at time ti . A time series is strictly
stationary if the joint distribution of

xt1 , xt2 , xt3 , . . . xtn

is the same as the distribution of

xt1+k , xt2+k , xt3+k , . . . xtn+k

for all possible n and k.



Stationarity

weaker concept weak stationarity, defined in terms of first and
second moments of {xt}.
Mean:

E [yt ] = µ ∀t

Variance

E [(yt − µ)2] = σ2 <∞ ∀t

Autocovariance

E [(yt1 − µ)(yt2 − µ)] = γt2−t1 <∞ ∀t1, t2

A process satisfying these assumptions is said to be the weakly
stationary, or covariance stationary.



Describing time series dependence - ACF/PACF

Autocovariance function

γs = E [(yt − E [yt ])(yt−s − E [yt−s ])] s = 1, 2, · · ·

Autocorrelation function (ACF)

τs = γs
γ0

s = 0, 1, 2, · · ·

Partial autocorrelation function (PACF)
No simple formula, roughly the change in autocorrelation from one
step to the next.



Example
Collect annual estimates of the Norwegian Consumers Price Index
(CPI) starting in 1516. Estimate the annual inflation as

Inflation = log(CPIt)− log(CPIt−1

based on the CPI series. Let q = 5.
1. Plot the two series.
2. Estimate the autocorrelations (acf) of orders 1 through q for

the CPI series.
3. Estimate the partial autocorrelations (pacf) of orders 1

through q for the CPI series.
4. Estimate the average inflation for the period.
5. Estimate the autocorrelations (acf) of orders 1 through q for

the Inflation series.
6. Estimate the partial autocorrelations (pacf) of orders 1

through q for the Inflation series.



Solution

cpi <- read.zoo("../../../../data/norway/nb_historical_statistics/cpi_norway_1516_2011.csv",
skip="2",format="%Y",header=TRUE,sep=",")

dcpi <- diff(log(cpi))
cpi <- as.matrix(cpi[,2])
dcpi <- as.matrix(dcpi[,2])



Time series plots of the series





Describing the cpi series

> acf(cpi,plot=FALSE,lag.max=5)

Autocorrelations of series cpi, by lag

0 1 2 3 4 5
1.000 0.971 0.942 0.914 0.885 0.857
> pacf(cpi,plot=FALSE,lag.max=5)

Partial autocorrelations of series cpi, by lag

1 2 3 4 5
0.971 -0.022 -0.012 -0.016 0.001







Describing the inflation series

> mean(dcpi)
[1] 0.01326274
> acf(dcpi,plot=FALSE,lag.max=5)
Autocorrelations of series dcpi, by lag

0 1 2 3 4 5
1.000 -0.021 -0.038 0.057 -0.044 0.082

> pacf(dcpi,plot=FALSE,lag.max=5)
Partial autocorrelations of series dcpi, by lag

1 2 3 4 5
-0.021 -0.039 0.056 -0.043 0.085







White Noise Process
(Purely random process)
A process is white noise if it satisfies the following conditions

E [yt ] = µ

var(yt) = σ2

γt−r =
{
σ2 if t = r
0 otherwise

Note that white noise is weakly stationary
The White Noise process is the natural null when testing for
autocorrelation.
We typically assume one special case of white noise.
Gaussian White Noise

y ∼iid N(µ, σ2)

with this as a null we can construct tests concerning
autocorrelation.



Testing for autocorrelation

1) Test whether τ̂l = 0 for one particular lag l .
A 95% confidence interval:[

−1.96 1√
T
,+1.96 1√

T

]
under the null of a Gaussian White Noise process.



Testing for autocorrelation
2) Test whether all correlation coefficients

τ1, τ2, · · · , τq

are jointly zero.
Two variants
Box-Pierce Q

Qm = T
m∑

k=1
τ̂k

2

Ljung-Box statistic (small sample correction)

Q∗
m = T (T + 2)

m∑
k=1

τ̂k
2

T − k

Both statistics have asymptotic χ2 distributions.



Example

Collect annual estimates of the Norwegian Consumers Price Index
(CPI) starting in 1516. Estimate the annual inflation as

Inflation = log(CPIt)− log(CPIt−1

based on the CPI series.
1. Use the Ljung-Box Q statistic to test whether the first five

autocorrelations are jointly zero.
2. Similary calculate the Box-Pierce Q statistic to test whether

the first five autocorrelations are jointly zero.
3. What is the “best” AR model?



Solution

cpi <- read.zoo("../../../../data/norway/nb_historical_statistics/cpi_norway_1516_2011.csv",
skip="2",format="%Y",header=TRUE,sep=",")

dcpi <- diff(log(cpi))
cpi <- as.matrix(cpi[,2])
dcpi <- as.matrix(dcpi[,2])



Calculating the test statistics
Box Pierce

> Box.test(dcpi,type="Box-Pierce",lag=5)
Box-Pierce test
data: dcpi
X-squared = 6.8142, df = 5, p-value = 0.2348



Ljung Box

> Box.test(dcpi,type="Ljung-Box",lag=5)
Box-Ljung test
data: dcpi
X-squared = 6.8967, df = 5, p-value = 0.2284



Not specifying a lag in the ar command says to choose the
optimal lag length using the AIC criterion.

> ar(dcpi,AIC=true)
Call:
ar(x = dcpi, AIC = true)
Coefficients:

1 2 3 4 5 6 7 8
0.0079 -0.0538 0.0788 -0.0109 0.0544 -0.0270 0.0066 -0.0340

9 10 11 12 13 14 15 16
-0.0353 0.1307 -0.0198 0.0247 -0.0857 -0.1147 0.0391 -0.0406

17
0.1365

Order selected 17 sigma^2 estimated as 0.01315

So the optimal autoregressive model involves 17 autoregressive
terms.



So the optimal autoregressive model involves 17 autoregressive
terms.
However, when one tries to do this with slightly lower number of
autoregressive terms, get some surprising effects. Try specying the
ar command with order.max specifiction, which says the maximal
lag length is order.max.

> ar(dcpi,AIC=true,order.max=5)
Call:
ar(x = dcpi, order.max = 5, AIC = true)

Order selected 0 sigma^2 estimated as 0.01382

If the maximal lag length is five, the model selected has zero
autoregressive terms.



> ar(dcpi,AIC=true,order.max=10)

Call:
ar(x = dcpi, order.max = 10, AIC = true)

Coefficients:
1 2 3 4 5 6 7 8

-0.0016 -0.0429 0.0595 -0.0382 0.0758 -0.0399 0.0306 -0.0439
9 10

-0.0432 0.1343

Order selected 10 sigma^2 estimated as 0.01354



> ar(dcpi,AIC=true,order.max=15)
Call:
ar(x = dcpi, order.max = 15, AIC = true)

Coefficients:
1 2 3 4 5 6 7 8

-0.0022 -0.0482 0.0692 -0.0252 0.0644 -0.0371 0.0253 -0.0372
9 10 11 12 13 14

-0.0429 0.1376 -0.0271 0.0360 -0.0932 -0.1042

Order selected 14 sigma^2 estimated as 0.01335

Once the max is above 10, the order increases. One can figure out
why by looking at the ACF and PACF plots.







Moving Average Processes
MA(q)

yt = µ+
q∑

i=1
θut−i + ut

q’th order moving average, where
ut ∼iid (0, σ2)

Linear combination of White Noise processes.
Properties of a moving average MA(q) process

E [yt ] = µ

var(yt) = γ0 = (1 + θ2
1 + θ2

2 + θ2
3 + · · ·+ θ2

q)σ2

γs =
{

(θs + θs+1θ1 + θs+2θ2 + · · ·+ θqθq−s)σ2 if s ≤ q
0 if s > q

MA process:
I Constant mean
I Constant variance
I Autocovariances zero after q lags.



The Lag operator

Useful piece of notation, the lag operator L. (Also called the
backshift operator B.)

Lyt = yt−1

Lkyt = yt−k



Autoregressive processes

yt = µ+
p∑

i=1
φiyt−i + ut

in lag operator notation

yt = µ+
p∑

i=1
φiLiyt + ut

or

φ(L) = (1− φ1L− φ2L2 − · · · − φpLp)

Stationarity condition for autoregressive processes. Consider

(1− φ1z − φ2z2 − · · · − φpzp)

All solutions of this “characteristic equation” lie outside unit circle.



Wold decomposition theorem

Example

yt = yt−1 + ut

Is it stationary?

1− φ1z = 0

z = 1

on the unit circle.
This is not a stationary process.
Roughly: Any stationary autoregressive process of finite order p
can be expressed as an infinite order Moving Average Process.



ARMA processes

ARMA(p, q) Combination of a AR and MA process.

yt = µ+φ1yt−1+φ2yt−2+· · ·+φpyt−p+θ1ut−1+θ2ut−2+· · ·+θqut−q+ut



Typical ACF functions

Recognising the different suspects
AR(p)
I Geometrically declining ACF
I Number of non-zero PACF equals p.

MA(q)
I Number of Non-zero ACF equals q.
I Geometrically declining PACF

ARMA(p, q).
I Geometrically declining ACF
I Geometrically declining PACF



Suppose the stochastic proces {yt} has the following structure

yt = ρyt−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting ρ = 0.8

and y0 = 0 simulate T = 1000 realizations of this process, and
plot the ACF and PACF of the resulting data series for lags 1-20.



Doing the simulation

series <- arima.sim(n=1000,list(ar=c(0.8,0),ma=c(0,0)))

ACF for process yt = 0.8yt−1 + ut

> acf(series,plot=FALSE,max.lag=20)
Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.791 0.654 0.505 0.398 0.305 0.223 0.168 0.124 0.079 0.063

11 12 13 14 15 16 17 18 19 20 21
0.048 0.057 0.068 0.088 0.108 0.115 0.104 0.079 0.060 0.054 0.046

22 23 24 25 26 27 28 29 30
0.048 0.047 0.046 0.045 0.027 0.020 -0.007 -0.026 -0.042





PACF for process yt = 0.8yt−1 + ut

> pacf(series,plot=FALSE,max.lag=20)

Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.791 0.077 -0.091 0.012 -0.013 -0.033 0.015 0.001 -0.037 0.042 0.005

12 13 14 15 16 17 18 19 20 21 22
0.043 0.028 0.040 0.026 -0.003 -0.034 -0.040 0.003 0.031 0.002 0.020

23 24 25 26 27 28 29 30
0.011 0.000 0.007 -0.042 0.003 -0.055 -0.023 -0.007





Box Jenkins model selection

Building ARMA models, the Box Jenkins approach.
The classical approach: Looking at the ACF and PACF functions
to determine a reasonable structure.



Differencing the series
to achieve stationarity

?
Identify model to be
tentatively entertained

?
Estimate the parameters
of the tentative model

?

Diagnostic checking
Is the model adequate?

�
���

H
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-

YES

?
Use the model for
forecasting and control



Collect quarterly data from the US on the aggregate GDP (Gross
Domestic Product) for the period 1947:I to 2007:II. Calculate the
log difference of the GDP series (ln(Yt)− ln(Yt−1)). You want to
model this series using time series, and apply the Box Jenkins
methodology to select a reasonable representation.
1. Plot the series.
2. Calculate the ACF and PACF for the series.
3. Use the ACF and PACF to select a model specifaction

(AR/MA/ARMA).



> GDP <- read.table("../data/us_gdp.csv",
skip=3,header=TRUE)

> gdp <- ts(GDP[,3],frequency=4,start=c(1947,3))
> dgdp <- diff(log(gdp))
> acf(as.matrix(dgdp),plot=FALSE)

Autocorrelations of series ‘as.matrix(dgdp)’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.502 0.350 0.116 0.033 -0.084 0.002 0.067 0.089 0.215 0.235

11 12 13 14 15 16 17 18 19 20 21
0.200 0.062 0.049 0.067 0.068 0.187 0.195 0.224 0.160 0.165 0.049

22 23 24
0.038 0.008 0.062



> pacf(as.matrix(dgdp),plot=FALSE)

Partial autocorrelations of series ‘as.matrix(dgdp)’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.502 0.132 -0.140 -0.025 -0.089 0.120 0.107 -0.013 0.181 0.069 -0.005

12 13 14 15 16 17 18 19 20 21 22
-0.098 0.033 0.147 0.018 0.151 0.017 0.044 -0.004 0.017 -0.029 0.039

23 24
0.000 0.047







Using information criteria to choose model

The more modern approach - Information criterion
For a large number of possible model specifications, estimate the
model, and then calculate a measure of fit.
The information critera is based on the theory of non-nested tests,
for the interested.
Akaike’s information criterion.

AIC = ln
(
σ̂2
)

+ 2k
T

where k is the lag length.



Collect quarterly data from the US on the aggregate GDP (Gross
Domestic Product) for the period staring 1947:3. Calculate the log
difference of the GDP series (ln(Yt)− ln(Yt−1)). You want to
model this series using time series. Preliminary plots of the ACF
suggestes an AR representation. Compare various AR
representations using Akaike’s information criterion.

AIC = ln
(
σ̂2
)

+ 2k
T



> GDP <- read.table("../../../../data/usa/us_macro_data/us_gdp.csv",skip=3,header=TRUE)
> gdp <- ts(GDP[,3],frequency=4,start=c(1947,3))
> dgdp <- diff(log(gdp))
> ar(as.matrix(dgdp),aic=TRUE,plot=FALSE)

Call:
ar(x = as.matrix(dgdp), aic = TRUE, plot = FALSE)

Coefficients:
1 2 3 4 5 6 7 8

0.4307 0.1888 -0.1029 0.0190 -0.1704 0.0926 0.0345 -0.0975
9 10 11 12 13 14 15 16

0.1490 0.0776 0.0716 -0.1384 -0.0195 0.1076 -0.0472 0.1512

Order selected 16 sigma^2 estimated as 8.731e-05



Forecasting

Forecasting: Predicting the values a series is likely to take.
Chief worry: Forecasting accuracy. If you get accurate forecasts,
who cares where they come from?
Two approaches to forecasting:
I Econometric (structural) forecasting. (Comes from a given

economic model.)
I Time series forecasting. (General functions of past data and

errors).



Difference between
I In-sample forecasts.

Generated for the same sample as was used to estimate the
model’s parameters.

I Out-of-sample forecasts.
Using estimated parameters on “fresh data,” data not used to
generate parameter estimates.



What do you forecasts?
I Tomorrow/next period only – one step ahead forecast.
I Several periods forward – multistep ahead forecasts.

Time series forecasting.
Do not cover forecasting with structural models, since they require
forecasts for explanatory variables. Therefore, of more interest is
forecasting with the usual time-series models.



Forecasting with ARMA models
Want: E [yt+s |Ωt ]: Expectation of process at time t + s
conditional on information at time t.
In particular, want E [yt+1|Ωt ], the one step ahead forecast.
Suppose we have an ARMA(p, q)

yt =
p∑

t=1
aiyt−i +

q∑
j=1

bjut−j + ut

Note that
E [ut+s |Ωt ] = 0 ∀ s > 0

(Since this is an indepedent process, our best guess is the
unconditional expectation)
Let ft,s be the forecast at time t for s steps into the future

ft,1 = E [yt+1|Ωt ]
for a general ARMA(p, q).

ft,s =
p∑

i=1
ai ft,s−i +

q∑
j=1

bjut+s−j

Note that in this function ut+s = 0 if s > 0 and equal to the
realized error ut+s if s ≤ 0.



Suppose you have a MA(3) process

yt = µ+ θ1ut−1 + θ2ut−2 + θ3ut−3 + ut

where ut is White Noise.
What are the one step, two step, three step and four step ahead
forecasts?



One step ahead forecasts

E [yt+1|yt ]

yt+1 = µ+ θ1ut + θ2ut−1 + θ3ut−2 + ut+1

E [yt+1|yt ] = µ+ θ1E [ut |yt ] + θ2E [ut−1|yt ] + θ3E [ut−2|yt ] + E [ut+1|yt ]
= µ+ θ1ut + θ2ut−1 + θ3ut−2 + 0
= µ+ θ1ut + θ2ut−1 + θ3ut−2



Two step ahead forecasts

E [yt+2|yt ]

yt+2 = µ+ θ1ut+1 + θ2ut + θ3ut−1 + ut+2

E [yt+2|yt ] = µ+ θ1E [ut+1|yt ] + θ2E [ut |yt ] + θ3E [ut−1|yt ] + E [ut+2|yt ]
= µ+ θ10 + θ2ut + θ3ut−1 + 0
= µ+ θ2ut + θ3ut−1



Three step ahead forecasts

E [yt+3|yt ]

yt+3 = µ+ θ1ut+2 + θ2ut+1 + θ3ut + ut+3

E [yt+3|yt ] = µ+ θ1E [ut+2|yt ] + θ2E [ut+1|yt ] + θ3E [ut |yt ] + E [ut+3|yt ]
= µ+ 0 + 0 + θ3ut + 0
= µ+ θ3ut



Four step ahead forecasts

E [yt+4|yt ]

yt+4 = µ+ θ1ut+3 + θ2ut+2 + θ3ut+1 + ut+4

E [yt+4|yt ] = µ+ θ1E [ut+3|yt ] + θ2E [ut+2|yt ] + θ3E [ut+1|yt ] + E [ut+4|yt ]
= µ+ 0 + 0 + 0 + 0
= µ



Comparing forecasts.

This is relevant for out-of-sample work, where we use the forecast
model to predict values, and then compare the forecasts to the
realizations.
Want to have the forecasts as “close” to the realized values as
possible. The close, the better forecast quality.
Need a metric for asking “how close” the forecasts are to the
realizations.



Metrics for evaluating forecast performance
Mean Squared Error

MSE = 1
T − (T1 − 1)

T∑
t=1

(yt+s − ft,s)2

Mean Absolute Error

MAE = 1
T − (T1 − 1)

T∑
t=1
|yt+s − ft,s |

Mean Absolute Percentage Error

MAPE = 1
T − (T1 − 1)

T∑
t=1

∣∣∣∣yt+s − ft,s
yt+s

∣∣∣∣
Adjusted AMAPE

MAPE = 1
T − (T1 − 1)

T∑
t=1

∣∣∣∣∣yt+s − ft,s
yt+s + ft,s

∣∣∣∣∣
Theils U-statistic

U =

√√√√√√ T∑
t=T1

(
yt+s−ft,s

xt+s

)2

(
yt+s−fbt,s

xt+s

)2

where fb is a benchmark forecast.
Alternative, closer to economic penalty function:
Count number of successful predictions of right sign.
Test for whether you can do better than pure chance.



Stock prices

When we in finance (and economics) talk about “time series
analysis” we usually have in mind the relationship between past
realizations of a variable, and the next realization, i.e. prediction.
In the finance perspective, we don’t always try to predict
something, we often try to establish a lack of predictive ability.



To put this seemingly strange statement in perspective:
The theory of efficient markets states (roughly):
The current price of a financial asset is the markets best evaluation
of what the assets value is. Any alternative prediction than what is
done by a well informed market can not do better than the market.



Random Walk Model
This statement needs to be formalized in some way to make it
testable.
The simplest possible such formalization is the

Pt = Pt−1 + εt

where Pt is the stock price at time t, Pt−1 the price at time t − 1,
and εt is a random term with expectation zero.
The name Random Walk betrays the model’s origin: the path of a
drunk left in the middle of a field.
Expanding this

Pt = Pt−1 + εt

= Pt−2 + εt−1 + εt

= Pt−3 + εt−2 + εt−1 + εt

= P0 +
t−1∑
j=0

εt−j

Observe that in the Random Walk model, the effect of a shock
(εt) is permanent.



While the Random Walk model is simple, it does not suffice as a
model of stock price behaviour. If it is one thing that we know
about stock returns, it is that holding stock had better promise
higher expected return than risk free investments, otherwise who
would bother?
Writing stock returns

Rt = Pt − Pt−1 + Dt
Pt−1

and assuming they are constant expectation µ

E [Rt ] = µ

µ = Pt − Pt−1 + Dt
Pt−1

µPt−1 = Pt + Dt − Pt−1

Pt + Dt = Pt−1(1 + µ)
Which suggests that modelling stock prices as

Pt + Dt = Pt−1(1 + µ) + εt



Typically we will add dividends into the price, so that Pt now
includes dividend paid out at time t. Then we can write

Pt = Pt−1(1 + µ) + εt

Thus, the best estimate of tomorrows price is today’s price plus the
one-period expected return.
If µ > 0 this is what is called a supermartingale

E [Pt ] > Pt−1
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