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1 Survey of time series issues

In this part we discuss some of the typical problems we run into when discussing time series.
We start by giving an overview of the issues and methods.
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1.1 Definition

A time series is a sequence of observations of economic variables,

x1, x2 . . . xt . . . xT

usually sampled at fixed intervals. Typical intervals: Daily, weekly, monthly, quarterly, annual.

1.2 Examples

Example: Consumer Price Index. What is the relative value of one unit of currency. Figure 1
show the evolution of the CPI for Norway.

Figure 1 An example: Norwegian Consumer Price Index.

Another example: Stock market index. What is the total value of an investment in the stock
market. Figure ?? shows the evolution of a stock market index for the Norwegian Stock market.
Time series can be either in the form of stocks and flows. Stocks measures the value of something
at a specific time, a flow measures something between two time periods.
The price index is an example of a stock.
An example of a flow is the inflation during a period. This can be found by taking the “first
differences” of the price indices. Figure 3 illustrates the time series of monthly inflation for
Norway.
It is very hard to interpret this time series, so we will often look at transformations. An example
is to look at annual observations.

1.3 Typical Problems in Time Series

1. Forecasting.

2. Trend Removal.

3. Seasonal Adjustment.

4. Detection of a Structural Break.
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Figure 2 An example: Stock Market Index (SP500).

Figure 3 An example: Norwegian Consumer Price Index. First Differences
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Figure 4 An example: Norwegian Consumer Price Index. First Differences of annual data

5. Causality–time lags.

6. Distinction between the short and long run

7. Study of agent’s expectations.

1.3.1 Forecasting

Evaluation of future values xT+h as a function of current and past values x1, x2 . . . xT .

ŷT+h = f(y1, y2, . . . yT )

Concerned about the quality of the forecast, depend on to what the degree the stochastic process
governing xt is “regular” as a function of time.
Also depend on the forecasting horizon. Usually get better forecasts for small values of h (short
horizon).

1.3.2 Trend Removal.

If the series have a clear trend (see the examples of price indices and stock indices), may want
to remove the trend and analyze the movements around the trend.

1.3.3 Seasonal Adjustment.

Many variable of economic interest will have strong seasonal components. For example heating
cost will clearly be low in the summer and high in the winter. Depending on purpose may want
to remove seasonal components.

1.3.4 Detection of a Structural Break.

One of the most important questions we face is determining whether the economic environment
has changed substantially, such that we have moved into a new regime, which necessitates
re–evaluation of the economic relationships
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As an example, consider figure 5, which shows the currency exchange rate between NOK and
EUR. Can we claim that the change in the time series is important enough such that this is a
structural break, or is this just a random evolution of a stationary process.

Figure 5 NOK/EUR exchange rate

1.3.5 Causality–time lags.

Another economic question with obvious policy implications is the question of whether and how
one economic variable influences another.

1.3.6 Distinction between the short and long run

To what degree are relationships persistent?

1.3.7 Study of agent’s expectations.

If we have data on agent’s forecasts, how accurate are these? Can agents forecast at all? Are
expectations rational?

1.4 Categories of Time series Modelling

There are some important distinctions between the groups of tools used for time series modelling.

1. Adjustment models.

2. Autopredictive models.

3. Explanatory models.

1.4.1 Adjustment models.

Roughly, mechanical models for removing seasonal components and trends.
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1.4.2 Autopredictive models.

Intuitively: “Model–free” forecasting models.

xt = f(xt−1, xt−2, . . .) + et

We work with simple models which merely describe the data. There is no theory which explains
why a particular formulation describes the data, but for forecasting purposes such a “theoryless”
formulation may often do better than a fully specified economic model.

1.4.3 Some Examples

Let yt be the data of interest, and εt be white noise (E[εt] = 0, E[ε2t = σ2
ε ], E[εtεs] = 0 ∀ s 6= t

The simplest time series specification is an AR(1) process, an autoregressive model of order 1:

yt = µ+ γyt−1 + εt

More generally, can write autoregressive specifications with p terms, AR(p):

yt = µ+
p∑

k=1
γyt−k + εt

An alternative specification is a Moving Average process (MA(1)):

yt = µ+ εt − θεt−1

Again, we can add terms to produce a MA(q) process:

yt = µ+ εt −
q∑

k=1
θkεt−k

A generalization of these models is the autoregressive moving average (ARMA(p,q)) model

yt = µ+
p∑

k=1
γyt−k + εt + εt −

q∑
k=1

θkεt−k

I will not go into details about these models, but they are implemented in any statistics package
you can think of, and they are important to know about for applied econometric work.

1.4.4 The Lag operator

When reading the literature about these types of models, one confusing item is the heavy use
of the lag operator. Let me just give you a few notes about this piece of notation.
Suppose our time series is yt.
The lag operator L just shifts the time index one period back

Lyt = yt−1

The reason it is so useful written this way is that we can do algebra using the lag operator.
For example

L(Lyt) = L(yt−1) = yt−2
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This will be written

L2yt

Think of the lag operator as a way of transforming time series following the rules of multiplica-
tion and addition.
With the lag notation we can very compactly express complicated time series models.
For example

xt = (aL+ bL2)xt = axt−1 + bxt−2

1.4.5 Unit Root tests

What is a unit root?
Consider the autoregressive relation

yt = ρyt−1 + εt

where ρ is a constant and εt an error term.
The parameter ρ is the parameter of interest. Note that it has implications for the type of
process on y:

• If ρ > 1 then y is an explosive process.

• If ρ = 1 then y is a random walk.

• If ρ < 1 then y is a stationary process.

It is the case of ρ = 1 which is the borderline case. In this case (ρ = 1) the process y is said to
have a unit root. Another terminology is to say that y is integrated of order 1.
When we test for an unit root, we want to test whether ρ = 1, because that has implications
for how to estimate y. If ρ = 1, then we want to do estimation using yt − yt−1, (take first
differences), since that is a stationary process, otherwise, if y is not integrated, we want to do
inference on y directly.
Unit Root tests are designed to test the hypothesis ρ = 1, but they do not have a simple normal
distribution, they are much more complicated.

1.4.6 Vector Autoregressions (VAR’s)

We looked earlier at an example of testing for Granger causality in a model with two variables
x and y:

yt = c+ α1yt−1 + α2yt−1 + β1xt−1β2xt−2 + εt

This is a simple example of an auto-regression, the current value of a variable is a (linear)
function of past values of itself and other variables.
Already one of the characteristics of this type of estimation should be clear, it is “model-free”
in the sense that we are not estimating an explicit economic model, we are exploring possible
linear relationships between economic variables. A prime use of these investigations will be
forecasting. It is also useful to generate “stylized facts” that our economic theories should be
able to explain. But it should be clear that a VAR or some other time series model does not
explain any causality or other regularities in the data.
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1.5 Explanatory models.

Roughly: “Economic” models of relationships between variables.

yt = f(xt; b) + et

where yt are endogenous variables and xt are exogenous variables. b are parameters and et are
random errors.
If the exogenous varibles xt are only observed at time t and the errors et are independent of
observations at other times, this is a static model.
But the model can be dynamic, both when

• The exogenous variables xt include past (lagged) values of y, yt−1, yt−2, . . ..

• The errors et depend on errors or variables at other times.

What we have covered so far in the course is of this type of model.
The typical issues we run into when it is time series data we are analyzing in a regression
framework.
Consider a regression model of the standard type

yt = Xtb+ et

where yt is the outcome of the dependent variable at time t, Xt the independent variables at
time t, et the error term at time t, and b the parameters of interest. The independent variables
Xt at time t may also include past values of yt as well as other variables observed at earlier
dates.
We then observe outcomes of yt and Xt for a number of periods t = 1, . . . T .
With this setup, the typical problem is that the error term et will not be independent. Think
of a shock to the economy, like the recent stock market gyrations. The effects of this shock may
very often persist for a time, affecting the error terms over this time in the same direction.
Because of the ordering that time imposes on the observations, we expect that errors that are
“close” (in time) may well be correlated, but that errors that are “distant” there will have little
correlation.
This imposes some structure on the form of the error covariance matrix.
The knowledge that we are dealing with a time series allow us to make assumptions about the
form of the covariance matrix of the error terms.
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2 Plotting

First thing to do with any time series you are using: Plot it to see if there are some special
features. This is always a good idea, one need to both “get a feel for the data” and spot potential
data problems, even though there is always the danger of seeing patterns that may not be there.
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3 Univariate time series

The above is a motivation, let us now go for the abstract univariate time series formulation

xt = f(xt−1, εt−1, . . .)

When we write

xt = f(xt−1, εt−1, . . .)

we move to an atheoretical world, where we work with standard methods for modelling the time
series relationships without explicitly thinking about an economic model which has generated
these relationships. We will later map these “reduced form” specifications to actual economic
models (typically called structural models).
Definition: Univariate time series modelling of process {xt}. Modelling and predicting xt+1 as
a function of past values xt, xt−1, · · · and past and current errors ut, ut−1, · · · and ut+1.

3.0.1 Stationarity

First question is: Is a series stationary?
This is the first question that needs to be answered. The modelling is very different depending
on whether a series is stationary or not.
Roughly, stationarity means that the stochastic relationship between one observations and the
next does not depend on when the observation is made.
Stationarity can be formally defined in various ways.
Strict stationarity
Let xti be the observation at time ti. A time series is strictly stationary if the joint distribution
of

xt1 , xt2 , xt3 , . . . xtn

is the same as the distribution of

xt1+k, xt2+k, xt3+k, . . . xtn+k

for all possible n and k.
A weaker concept is called weak stationarity, usually defined in terms of first and second mo-
ments of {xt}.
Define these moments
Mean:

E[yt] = µ ∀t

Variance

E[(yt − µ)2] = σ2 <∞ ∀t

Autocovariance

E [(yt1 − µ)(yt2 − µ)] = γt2−t1 <∞ ∀t1, t2

A process satisfying these assumptions is said to be the weakly stationary, or covariance sta-
tionary.
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Autocovariance function

γs = E [(yt − E[yt])(yt−s − E[yt−s])] s = 1, 2, · · ·

Autocorrelation function (ACF)

τs = γs
γ0

s = 0, 1, 2, · · ·

Partial autocorrelation function (PACF)
No simple formula, roughly the change in autocorrelation from one step to the next.

3.0.2 Empirical ACF and PACF

Exercise 1.
Collect annual estimates of the Norwegian Consumers Price Index (CPI) starting in 1516. Estimate
the annual inflation as

Inflation = log(CPIt)− log(CPIt−1

based on the CPI series. Let q = 5.

1. Plot the two series.

2. Estimate the autocorrelations (acf) of orders 1 through q for the CPI series.

3. Estimate the partial autocorrelations (pacf) of orders 1 through q for the CPI series.

4. Estimate the average inflation for the period.

5. Estimate the autocorrelations (acf) of orders 1 through q for the Inflation series.

6. Estimate the partial autocorrelations (pacf) of orders 1 through q for the Inflation series.

Solution to Exercise 1.

cpi <- read.zoo("../../../../data/norway/nb_historical_statistics/cpi_norway_1516_2011.csv",
skip="2",format="%Y",header=TRUE,sep=",")

dcpi <- diff(log(cpi))
cpi <- as.matrix(cpi[,2])
dcpi <- as.matrix(dcpi[,2])

Time series plots of the series
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Describing the cpi series

> acf(cpi,plot=FALSE,lag.max=5)

Autocorrelations of series ‘cpi’, by lag

0 1 2 3 4 5
1.000 0.971 0.942 0.914 0.885 0.857
> pacf(cpi,plot=FALSE,lag.max=5)

Partial autocorrelations of series ‘cpi’, by lag

1 2 3 4 5
0.971 -0.022 -0.012 -0.016 0.001
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Describing the inflation series

> mean(dcpi)
[1] 0.01326274

> acf(dcpi,plot=FALSE,lag.max=5)

Autocorrelations of series ‘dcpi’, by lag

0 1 2 3 4 5
1.000 -0.021 -0.038 0.057 -0.044 0.082

> pacf(dcpi,plot=FALSE,lag.max=5)

Partial autocorrelations of series ‘dcpi’, by lag

1 2 3 4 5
-0.021 -0.039 0.056 -0.043 0.085
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3.0.3 White Noise Process

(Purely random process)
A process is white noise if it satisfies the following conditions

E[yt] = µ

var(yt) = σ2

γt−r =
{
σ2 if t = r
0 otherwise

Note that white noise is weakly stationary
The White Noise process is the natural null when testing for autocorrelation.
We typically assume one special case of white noise.
Gaussian White Noise

y ∼iid N(µ, σ2)

with this as a null we can construct tests concerning autocorrelation.
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3.1 Testing for autocorrelation

1) Test whether τ̂l = 0 for one particular lag l.
A 95% confidence interval[

−1.96 1√
T
,+1.96 1√

T

]
under the null of a Gaussian White Noise process.
2) Test whether all correlation coefficients

τ1, τ2, · · · , τq

are jointly zero.
Two variants
Box-Pierce Q

Qm = T
m∑
k=1

τ̂k
2

Ljung-Box statistic (small sample correction)

Q∗
m = T (T + 2)

m∑
k=1

τ̂k
2

T − k

Both statistics have asymptotic χ2 distributions.
Exercise 2.
Collect annual estimates of the Norwegian Consumers Price Index (CPI) starting in 1516. Estimate
the annual inflation as

Inflation = log(CPIt)− log(CPIt−1

based on the CPI series.

1. Use the Ljung-Box Q statistic to test whether the first five autocorrelations are jointly zero.

2. Similary calculate the Box-Pierce Q statistic to test whether the first five autocorrelations are
jointly zero.

3. What is the “best” AR model?

Solution to Exercise 2.

cpi <- read.zoo("../../../../data/norway/nb_historical_statistics/cpi_norway_1516_2011.csv",
skip="2",format="%Y",header=TRUE,sep=",")

dcpi <- diff(log(cpi))
cpi <- as.matrix(cpi[,2])
dcpi <- as.matrix(dcpi[,2])

Calculating the test statistics
Box Pierce

> Box.test(dcpi,type="Box-Pierce",lag=5)
Box-Pierce test
data: dcpi
X-squared = 6.8142, df = 5, p-value = 0.2348
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Ljung Box

> Box.test(dcpi,type="Ljung-Box",lag=5)
Box-Ljung test
data: dcpi
X-squared = 6.8967, df = 5, p-value = 0.2284

Not specifying a lag in the ar command says to choose the optimal lag length using the AIC criterion.

> ar(dcpi,AIC=true)
Call:
ar(x = dcpi, AIC = true)
Coefficients:

1 2 3 4 5 6 7 8
0.0079 -0.0538 0.0788 -0.0109 0.0544 -0.0270 0.0066 -0.0340

9 10 11 12 13 14 15 16
-0.0353 0.1307 -0.0198 0.0247 -0.0857 -0.1147 0.0391 -0.0406

17
0.1365

Order selected 17 sigma^2 estimated as 0.01315

So the optimal autoregressive model involves 17 autoregressive terms.
However, when one tries to do this with slightly lower number of autoregressive terms, get some surprising
effects. Try specying the ar command with order.max specifiction, which says the maximal lag length is
order.max.

> ar(dcpi,AIC=true,order.max=5)
Call:
ar(x = dcpi, order.max = 5, AIC = true)

Order selected 0 sigma^2 estimated as 0.01382
> ar(dcpi,AIC=true,order.max=10)

Call:
ar(x = dcpi, order.max = 10, AIC = true)

Coefficients:
1 2 3 4 5 6 7 8

-0.0016 -0.0429 0.0595 -0.0382 0.0758 -0.0399 0.0306 -0.0439
9 10

-0.0432 0.1343

Order selected 10 sigma^2 estimated as 0.01354
> ar(dcpi,AIC=true,order.max=15)

Call:
ar(x = dcpi, order.max = 15, AIC = true)

Coefficients:
1 2 3 4 5 6 7 8

-0.0022 -0.0482 0.0692 -0.0252 0.0644 -0.0371 0.0253 -0.0372
9 10 11 12 13 14

-0.0429 0.1376 -0.0271 0.0360 -0.0932 -0.1042

Order selected 14 sigma^2 estimated as 0.01335
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If the maximal lag length is five, the model selected has zero autoregressive terms. Once the max is above
10, the order increases. One can figure out why by looking at the ACF and PACF plots.

Observe that the estimated AR coeffisients for lags below five are small in magnitude. Longer lag lengths
have higher estimated AR coefficients.

3.2 Moving Average Processes

MA(q)

yt = µ+
q∑
i=1

θut−i + ut

q’th order moving average, where

ut ∼iid (0, σ2)

Linear combination of White Noise processes.
Properties of a moving average MA(q) process
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E[yt] = µ

var(yt) = γ0 = (1 + θ2
1 + θ2

2 + θ2
3 + · · ·+ θ2

q)σ2

γs =
{

(θs + θs+1θ1 + θs+2θ2 + · · ·+ θqθq−s)σ2 if s ≤ q
0 if s > q

MA process:

• Constant mean

• Constant variance

• Autocovariances zero after q lags.

3.3 The Lag operator

Useful piece of notation, the lag operator L. (Also called the backshift operator B.)

Lyt = yt−1

Lkyt = yt−k

3.4 Autoregressive processes

yt = µ+
p∑
i=1

φiyt−i + ut

in lag operator notation

yt = µ+
p∑
i=1

φiL
iyt + ut

or

φ(L) = (1− φ1L− φ2L
2 − · · · − φpLp)

Stationarity condition for autoregressive processes. Consider

(1− φ1z − φ2z
2 − · · · − φpzp)

All solutions of this “characteristic equation” lie outside unit circle.
Example

yt = yt−1 + ut

Is it stationary?

1− φ1z = 0

z = 1

on the unit circle.
This is not a stationary process.
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3.5 Wold decomposition theorem

Roughly: Any stationary autoregressive process of finite order p can be expressed as an infinite
order Moving Average Process.

3.6 ARMA processes

ARMA(p, q) Combination of a AR and MA process.

yt = µ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + θ1ut−1 + θ2ut−2 + · · ·+ θqut−q + ut

3.7 Typical ACF functions

Recognising the different suspects
AR(p)

• Geometrically declining ACF

• Number of non-zero PACF equals p.

MA(q)

• Number of Non-zero ACF equals q.

• Geometrically declining PACF

ARMA(p, q).

• Geometrically declining ACF

• Geometrically declining PACF

Exercise 3.
Suppose the stochastic proces {yt} has the following structure

yt = ρyt−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting ρ = 0.8 and y0 = 0 simulate T = 1000

realizations of this process, and plot the ACF and PACF of the resulting data series for lags 1-20.
Solution to Exercise 3.
Doing the simulation

series <- arima.sim(n=1000,list(ar=c(0.8,0),ma=c(0,0)))

ACF for process yt = 0.8yt−1 + ut

> acf(series,plot=FALSE,max.lag=20)

Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.791 0.654 0.505 0.398 0.305 0.223 0.168 0.124 0.079 0.063

11 12 13 14 15 16 17 18 19 20 21
0.048 0.057 0.068 0.088 0.108 0.115 0.104 0.079 0.060 0.054 0.046

22 23 24 25 26 27 28 29 30
0.048 0.047 0.046 0.045 0.027 0.020 -0.007 -0.026 -0.042
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PACF for process yt = 0.8yt−1 + ut

> pacf(series,plot=FALSE,max.lag=20)

Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.791 0.077 -0.091 0.012 -0.013 -0.033 0.015 0.001 -0.037 0.042 0.005

12 13 14 15 16 17 18 19 20 21 22
0.043 0.028 0.040 0.026 -0.003 -0.034 -0.040 0.003 0.031 0.002 0.020

23 24 25 26 27 28 29 30
0.011 0.000 0.007 -0.042 0.003 -0.055 -0.023 -0.007

Exercise 4.
Suppose the stochastic proces {yt} has the following structure

yt = ρyt−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting ρ = 0.2, y0 = 0 and T = 1000, simulate T

realizations of this process, and plot the ACF and PACF of the resulting data series for lags 1-20.
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Solution to Exercise 4.
Performing the simulation

> series <- arima.sim(n=1000,list(ar=c(0.2,0),ma=c(0,0)))

ACF for process yt = 0.2yt−1 + ut

> acf(series,plot=FALSE,lag.max=20)
Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.188 0.062 0.012 -0.007 0.017 0.026 0.040 -0.019 0.031 -0.025

11 12 13 14 15 16 17 18 19 20
-0.036 -0.041 -0.008 -0.021 -0.039 -0.067 -0.065 -0.016 -0.019 -0.012

PACF for process yt = 0.2yt−1 + ut

> pacf(series,plot=FALSE,lag.max=20)
Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.188 0.028 -0.004 -0.010 0.020 0.021 0.031 -0.035 0.040 -0.036 -0.029

12 13 14 15 16 17 18 19 20
-0.030 0.009 -0.021 -0.032 -0.057 -0.035 0.008 -0.011 -0.007
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Exercise 5.
Suppose the stochastic proces {yt} has the following structure

yt = θut−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting θ = 0.8, simulate 1000 realizations of this

process, and plot the ACF and PACF of the resulting data series for lags 1-20.
Solution to Exercise 5.

> series <- arima.sim(n=1000,list(ar=c(0,0),ma=c(0.8,0)))

ACF for process yt = 0.8ut−1 + ut

> acf(series,plot=FALSE,lag.max=20)

Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.453 -0.058 -0.045 -0.040 -0.019 0.031 0.038 0.052 0.080 0.047

11 12 13 14 15 16 17 18 19 20
0.012 -0.030 -0.044 -0.002 0.033 -0.003 -0.025 -0.017 -0.027 0.012

PACF for process yt = 0.8ut−1 + ut

> pacf(series,plot=FALSE,lag.max=20)

Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.453 -0.331 0.198 -0.185 0.133 -0.057 0.066 0.016 0.069 -0.025 0.039

12 13 14 15 16 17 18 19 20
-0.076 0.033 -0.011 0.035 -0.064 0.026 -0.043 0.001 0.037
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Exercise 6.
Suppose the stochastic proces {yt} has the following structure

yt = θut−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting θ = 0.2, simulate 1000 realizations of this

process, and plot the ACF and PACF of the resulting data series for lags 1-20.
Solution to Exercise 6.

> series <- arima.sim(n=1000,list(ar=c(0,0),ma=c(0.2,0)))

ACF for process yt = 0.2ut−1 + ut

> acf(series,plot=FALSE,lag.max=20)

Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.196 0.012 -0.052 -0.020 -0.001 -0.038 -0.074 -0.026 -0.019 0.006

11 12 13 14 15 16 17 18 19 20
0.054 0.080 0.044 0.040 -0.036 -0.083 0.036 0.001 0.030 0.014
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PACF for process yt = 0.2ut−1 + ut

> pacf(series,plot=FALSE,lag.max=20)

Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.196 -0.028 -0.051 0.001 0.003 -0.043 -0.062 0.001 -0.019 0.005 0.053

12 13 14 15 16 17 18 19 20
0.060 0.013 0.031 -0.046 -0.071 0.075 -0.015 0.035 0.017

Exercise 7.
Suppose the stochastic proces {yt} has the following structure

yt = ρyt−1 + θut−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting ρ = 0.8 and θ = 0.8, simulate T = 1000

realizations of this process, and plot the ACF and PACF of the resulting data series for lags 1-20.
Solution to Exercise 7.

> series <- arima.sim(n=1000,list(ar=c(0.8,0),ma=c(0.8,0)))

ACF for process yt = 0.8yt−1 + 0.8ut−1 + ut

> acf(series,plot=FALSE,lag.max=20)

Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.896 0.699 0.521 0.364 0.236 0.141 0.077 0.036 0.010 -0.002

11 12 13 14 15 16 17 18 19 20
0.002 0.010 0.018 0.034 0.044 0.045 0.041 0.022 -0.004 -0.026
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PACF for process yt = 0.8yt−1 + 0.8ut−1 + ut

> pacf(series,plot=FALSE,lag.max=20)

Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.896 -0.525 0.248 -0.252 0.162 -0.124 0.105 -0.084 0.054 -0.008 0.045

12 13 14 15 16 17 18 19 20
-0.043 0.055 0.017 -0.051 0.036 -0.044 -0.049 0.017 -0.008

Exercise 8.
Suppose the stochastic proces {yt} has the following structure

yt = ρyt−1 + ut

where ut is Gaussian White Noise with σ2
u = 1. Setting ρ = 0.99, simulate 1000 realizations of this

process, and plot the ACF and PACF of the resulting data series for lags 1-20. (This is close to a
unit root)
Solution to Exercise 8.
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> series <- arima.sim(n=1000,list(ar=c(0.99,0),ma=c(0,0)))

ACF for process yt = 0.99yt−1 + ut

> acf(series,plot=FALSE,lag.max=20)

Autocorrelations of series ‘series’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12
1.000 0.986 0.971 0.955 0.938 0.922 0.905 0.889 0.874 0.859 0.845 0.833 0.821

13 14 15 16 17 18 19 20
0.809 0.797 0.785 0.773 0.762 0.751 0.740 0.730

PACF for process yt = 0.99yt−1 + ut

> pacf(series,plot=FALSE,lag.max=20)
Partial autocorrelations of series ‘series’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.986 -0.031 -0.063 -0.006 -0.009 -0.006 0.004 0.007 0.017 0.038 0.025

12 13 14 15 16 17 18 19 20
0.024 -0.036 -0.022 0.012 0.009 0.018 0.001 -0.011 0.013
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3.8 Estimation of a given model

Given an AR/MA/ARMA specification, how is it estimated?
Usually, since for MA specifications the errors are not observed, the estimation is done with
Maximum Likelihood.
One exception is AR(p) specifications, without MA terms. Here OLS gives consistent estimates
of the AR parameters, although Maximum Likelihood may be better also here.

3.9 Box Jenkins model selection

Building ARMA models, the Box Jenkins approach.
Differencing the series
to achieve stationarity

?
Identify model to be
tentatively entertained

?
Estimate the parameters
of the tentative model

?

Diagnostic checking
Is the model adequate?

����
HHHj

NO�

6

-

YES

?
Use the model for
forecasting and control

The classical approach: Looking at the ACF and PACF functions to determine a reasonable
structure.
Exercise 9.
Collect quarterly data from the US on the aggregate GDP (Gross Domestic Product) for the period
1947:I to 2007:II. Calculate the log difference of the GDP series (ln(Yt) − ln(Yt−1)). You want to
model this series using time series, and apply the Box Jenkins methodology to select a reasonable
representation.

1. Plot the series.

2. Calculate the ACF and PACF for the series.

3. Use the ACF and PACF to select a model specifaction (AR/MA/ARMA).

Solution to Exercise 9.

> GDP <- read.table("../../../../data/usa/us_macro_data/us_gdp.csv",
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skip=3,header=TRUE)
> gdp <- ts(GDP[,3],frequency=4,start=c(1947,3))
> dgdp <- diff(log(gdp))
> acf(as.matrix(dgdp),plot=FALSE)

Autocorrelations of series ‘as.matrix(dgdp)’, by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.502 0.350 0.116 0.033 -0.084 0.002 0.067 0.089 0.215 0.235

11 12 13 14 15 16 17 18 19 20 21
0.200 0.062 0.049 0.067 0.068 0.187 0.195 0.224 0.160 0.165 0.049

22 23 24
0.038 0.008 0.062

> pacf(as.matrix(dgdp),plot=FALSE)

Partial autocorrelations of series ‘as.matrix(dgdp)’, by lag

1 2 3 4 5 6 7 8 9 10 11
0.502 0.132 -0.140 -0.025 -0.089 0.120 0.107 -0.013 0.181 0.069 -0.005

12 13 14 15 16 17 18 19 20 21 22
-0.098 0.033 0.147 0.018 0.151 0.017 0.044 -0.004 0.017 -0.029 0.039

23 24
0.000 0.047
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3.10 Using information criteria to choose model

The more modern approach - Information criterion
For a large number of possible model specifications, estimate the model, and then calculate a
measure of fit.
The information critera is based on the theory of non-nested tests, for the interested.
Akaike’s information criterion.

AIC = ln
(
σ̂2
)

+ 2k
T

where k is the lag length.
Exercise 10.
Collect quarterly data from the US on the aggregate GDP (Gross Domestic Product) for the period
staring 1947:3. Calculate the log difference of the GDP series (ln(Yt) − ln(Yt−1)). You want to
model this series using time series. Preliminary plots of the ACF suggestes an AR representation.
Compare various AR representations using Akaike’s information criterion.

AIC = ln
(
σ̂2
)

+ 2k
T

Solution to Exercise 10.

> GDP <- read.table("../../../../data/usa/us_macro_data/us_gdp.csv",skip=3,header=TRUE)
> gdp <- ts(GDP[,3],frequency=4,start=c(1947,3))
> dgdp <- diff(log(gdp))
> ar(as.matrix(dgdp),aic=TRUE,plot=FALSE)
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Call:
ar(x = as.matrix(dgdp), aic = TRUE, plot = FALSE)

Coefficients:
1 2 3 4 5 6 7 8

0.4307 0.1888 -0.1029 0.0190 -0.1704 0.0926 0.0345 -0.0975
9 10 11 12 13 14 15 16

0.1490 0.0776 0.0716 -0.1384 -0.0195 0.1076 -0.0472 0.1512

Order selected 16 sigma^2 estimated as 8.731e-05

3.11 Forecasting

Forecasting in econometrics.
Forecasting: Predicting the values a series is likely to take.
Chief worry: Forecasting accuracy. If you get accurate forecasts, who cares where they come
from?
Two approaches to forecasting:

• Econometric (structural) forecasting. (Comes from a given economic model.)

• Time series forecasting. (General functions of past data and errors).

Difference between

• In-sample forecasts.
Generated for the same sample as was used to estimate the model’s parameters.

• Out-of-sample forecasts.
Using estimated parameters on “fresh data,” data not used to generate parameter esti-
mates.

What do you forecasts?

• Tomorrow/next period only – one step ahead forecast.

• Several periods forward – multistep ahead forecasts.

Time series forecasting.
Do not cover forecasting with structural models, since they require forecasts for explanatory
variables. Therefore, of more interest is forecasting with the usual time-series models.

3.12 Forecasting with ARMA models

Want: E[yt+s|Ωt]: Expectation of process at time t+ s conditional on information at time t.
In particular, want E[yt+1|Ωt], the one step ahead forecast.
Suppose we have an ARMA(p, q)

yt =
p∑
t=1

aiyt−i +
q∑
j=1

bjut−j + ut

Note that

E[ut+s|Ωt] = 0 ∀ s > 0
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(Since this is an indepedent process, our best guess is the unconditional expectation)
Let ft,s be the forecast at time t for s steps into the future

ft,1 = E[yt+1|Ωt]

for a general ARMA(p, q).

ft,s =
p∑
i=1

aift,s−i +
q∑
j=1

bjut+s−j

Note that in this function ut+s = 0 if s > 0 and equal to the realized error ut+s if s ≤ 0.
Exercise 11.
Suppose you have a MA(3) process

yt = µ+ θ1ut−1 + θ2ut−2 + θ3ut−3 + ut

where ut is White Noise.
What are the one step, two step, three step and four step ahead forecasts?
Solution to Exercise 11.
One step ahead forecasts

E[yt+1|yt]

yt+1 = µ+ θ1ut + θ2ut−1 + θ3ut−2 + ut+1

E[yt+1|yt] = µ+ θ1E[ut|yt] + θ2E[ut−1|yt] + θ3E[ut−2|yt] + E[ut+1|yt]
= µ+ θ1ut + θ2ut−1 + θ3ut−2 + 0
= µ+ θ1ut + θ2ut−1 + θ3ut−2

Two step ahead forecasts

E[yt+2|yt]

yt+2 = µ+ θ1ut+1 + θ2ut + θ3ut−1 + ut+2

E[yt+2|yt] = µ+ θ1E[ut+1|yt] + θ2E[ut|yt] + θ3E[ut−1|yt] + E[ut+2|yt]
= µ+ θ10 + θ2ut + θ3ut−1 + 0
= µ+ θ2ut + θ3ut−1

Three step ahead forecasts

E[yt+3|yt]

yt+3 = µ+ θ1ut+2 + θ2ut+1 + θ3ut + ut+3

E[yt+3|yt] = µ+ θ1E[ut+2|yt] + θ2E[ut+1|yt] + θ3E[ut|yt] + E[ut+3|yt]
= µ+ 0 + 0 + θ3ut + 0
= µ+ θ3ut
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Four step ahead forecasts

E[yt+4|yt]

yt+4 = µ+ θ1ut+3 + θ2ut+2 + θ3ut+1 + ut+4

E[yt+4|yt] = µ+ θ1E[ut+3|yt] + θ2E[ut+2|yt] + θ3E[ut+1|yt] + E[ut+4|yt]
= µ+ 0 + 0 + 0 + 0
= µ

Exercise 12.
Suppose you have a AR(2) process

yt = µ+ φ1yt−1 + φ2yt−2 + ut

where ut is White Noise.
What are the one step, two step and three step ahead forecasts?
Solution to Exercise 12.
One step ahead forecast

E[yt+1|yt]

yt+1 = µ+ φ1yt + φ2yt−1 + ut+1

E[yt+1|yt] = µ+ φ1E[yt|yt] + φ2E[yt−1|yt] + E[ut+1|yt]
= µ+ φ1yt + φ2yt−1 + 0
= µ+ φ1yt + φ2yt−1

Two step ahead forecast

E[yt+2|yt]

yt+2 = µ+ φ1yt+1 + φ2yt + ut+2

E[yt+2|yt] = µ+ φ1E[yt+1|yt] + φ2E[yt|yt] + E[ut+2|yt]
= µ+ φ1E[yt+1|yt] + φ2yt + 0
= µ+ φ1 (µ+ φ1yt + φ2yt−1) + φ2yt

= µ+ φ1µ+ φ1φ1yt + φ1φ2yt−1 + φ2yt

= µ+ φ1µ+ φ2
1yt + φ1φ2yt−1 + φ2yt

= µ+ φ1µ+
(
φ2

1 + φ2
)
yt + φ1φ2yt−1

Three step ahead forecast

E[yt+3|yt]

yt+3 = µ+ φ1yt+2 + φ2yt+1 + ut+3

E[yt+3|yt] = µ+ φ1E[yt+2|yt] + φ2E[yt+1|yt] + E[ut+3|yt]
= µ+ φ1

(
µ+ φ1µ+

(
φ2

1 + φ2
)
yt + φ1φ2yt−1

)
+ φ2 (µ+ φ1yt + φ2yt−1) + 0

=
(
1 + φ1 + φ2

1 + φ1
)
µ+

(
φ2

1 + φ2 + φ1φ2
)
yt +

(
φ2

1φ2 + φ2
2
)
yt−1
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3.13 Comparing forecasts.

This is relevant for out-of-sample work, where we use the forecast model to predict values, and
then compare the forecasts to the realizations.
Want to have the forecasts as “close” to the realized values as possible. The close, the better
forecast quality.
Need a metric for asking “how close” the forecasts are to the realizations.
Metrics for evaluating forecast performance
Mean Squared Error

MSE = 1
T − (T1 − 1)

T∑
t=1

(yt+s − ft,s)2

Mean Absolute Error

MAE = 1
T − (T1 − 1)

T∑
t=1
|yt+s − ft,s|

Mean Absolute Percentage Error

MAPE = 1
T − (T1 − 1)

T∑
t=1

∣∣∣∣yt+s − ft,syt+s

∣∣∣∣
Adjusted AMAPE

MAPE = 1
T − (T1 − 1)

T∑
t=1

∣∣∣∣∣yt+s − ft,syt+s + ft,s

∣∣∣∣∣
Theils U-statistic

U =

√√√√√√ T∑
t=T1

(
yt+s−ft,s

xt+s

)2

(
yt+s−fbt,s

xt+s

)2

where fb is a benchmark forecast.
Alternative, closer to economic penalty function:
Count number of successful predictions of right sign.
Test for whether you can do better than pure chance.

Literature Most of this lecture is taken rather directly from Brooks (2002), with additional
input from Hamilton (1994).
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4 Stock prices

However, when we in finance (and economics) talk about “time series analysis” we typically
have in mind the relationship between past realizations of a variable, and the next realization,
i.e. prediction.
However, to put this in the finance perspective, we don’t always try to predict something, we
often try to establish a lack of predictive ability.
To put this seemingly strange statement in perspective, let us talk a bit about finance theory.
The theory of efficient markets states (roughly) that the current price of a financial asset is the
markets best evaluation of what the assets value is. Any alternative prediction than what is
done by the market can not do better than the market.
Thinking about this, this statement needs to be formalized in some way to make it testable.
The simplest possible such formalization is the

4.1 Random Walk Model

Pt = Pt−1 + εt

where Pt is the stock price at time t, Pt−1 the price at time t− 1, and εt is a random term with
expectation zero.
The name Random Walk betrays the model’s origin, which was to describe the path of a drunk
left in the middle of a field.
Expanding this

Pt = Pt−1 + εt

= Pt−2 + εt−1 + εt

= Pt−3 + εt−2 + εt−1 + εt

= Pt−4 + εt−2 + εt−1 + εt

= P0 +
t−1∑
j=0

εt−j

Observe immediately that in the Random Walk model, the effect of a shock (εt) is permanent.
While the Random Walk model is simple, it does not suffice as a model of stock price behaviour.
If it is one thing that we know about stock returns, it is that holding stock had better promise
higher expected return than risk free investments, otherwise who would bother?
Writing stock returns

Rt = Pt − Pt−1 +Dt

Pt−1

and assuming they are constant expectation µ

E[Rt] = µ

µ = Pt − Pt−1 +Dt

Pt−1

µPt−1 = Pt +Dt − Pt−1

Pt +Dt = Pt−1(1 + µ)
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Typically which suggests that modelling stock prices as

Pt +Dt = Pt−1(1 + µ) + εt

Typically we will add dividends into the price, so that Pt now includes dividend paid out at
time t.
Then we can write

Pt = Pt−1(1 + µ) + εt

Thus, the best estimate of tomorrows price is today’s price plus the one-period expected return.
If µ > 0 this is what is called a supermartingale

E[Pt] > Pt−1
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5 Readings

Specialized textbook for Finance and R: Tsay (2013).
The Bible: Hamilton (1994).
Much of the overview is taken from Gourieroux and Monfort (1997).
A good discussion of lag operators is in Hamilton (1994), which is also the preferred advanced
source for time series analysis.
Most textbooks in econometrics, like Greene (1997) and Davidson and MacKinnon (1993) will
have sections on time series analysis. There are also a huge number of pure time series texts.
For unit roots and integration: Campbell and Perron (1991) is a short overview, alternatively
(Davidson and MacKinnon, 1993, 20.1), (Hamilton, 1994, Ch 17).
For VAR’s:(Davidson and MacKinnon, 1993, 19.5),(Hamilton, 1994, Ch 11: 11.1, 11.2).
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