
SDF based asset pricing



General overview of asset pricing testing.

The purpose of this section is to give an overview of a number of
asset pricing models, their testing, and relation to each others.
Consider what is typically called the canonical asset pricing
equation. Most of the models we will look at can be viewed as
special cases of this.

Et [mt+1Rit+1] = 1 (1)

Here Ri ,t+1 is the gross return, and mt is a random variable. The
exact nature of mt will depend on the nature of our asset pricing
model.



Et [·] is shorthand for the conditional expectation given a time t
information set. This would be written more correctly as E [·|Ωt ],
where Ωt is the market-wide information set.
You may also want to recall the Law of iterated expectations:
E [X ] = E [E [X |Y ]], for random variable X and Y , which is heavily
used in econometric analysis. In the shorthand form used above,
this can be written

Et [yt+2] = Et [Et+1[yt+2]]

This equation is the outcome of a number of models, and mt has
many names, depending on the model. Examples include the
intertemporal marginal rate of substitution, a stochastic discount
factor, and an equivalent Martingale measure.



Pricing operators
Let me now give a quick reasoning for where this equation is
coming from.
The equation in return form is:

Et [mt+1Ri ,t+1] = 1

Since in terms of asset prices Pt

Ri ,t+1 = Pi ,t+1
Pi ,t

We can rewrite

Et

[
mt+1

Pi ,t+1
Pi ,t

]
= 1

implying

Pi ,t = Et [mt+1Pi ,t+1]



Let us now map this notation to the the more common asset
prcing one.
The future payoffs for asset i :

Pi ,t+1 = xi

Stack these: P1,t+1
...

Pn,t+1

 =

 x1
...

xn


or

Pt+1 = x

The interpretation is that x is the vector of future payoffs.
Further, current payoffs

Pt = q

and the factor

mt+1 = y



We are interested in the price today of the vector x of future
payoffs. This is the pricing functional π(·) that maps future payoffs
into current prices. The prices today of the future payoffs x is q :

q = π(x)

Since π(·) represent current prices of claims to future payoffs, we
can say something about it.
For obvious no-arbitrage reasons, it makes sense to impose
value-additivity :

π(ω1x1 + ω2x2) = ω1π(x1) + ω2π(x2)

and continuity, very small payoffs have small prices.
These are sufficient assumptions to restrict π(·) to be a linear
functional on the space of future payoffs.



q = π(x)

If c is a portfolio of assets, linearity implies that

cq = π(cx)

Consider now this linear functional π(·).
It can be shown that any pricing functional π(·) can be represented
by a random variable y as:

q = π(x) = E [yx]

That is, there is some random variable y that can be used to price
all payoffs x.
This variable y is the stochastic discount factor .
Technical reason: The conditional expectation defines an inner
product on the linear space of possible future payoffs.



Present value relationship.
Let us look at one implication of (1). It can be used as a
justification of the present value model:

Pt = Et [mt+1(dt+1 + pt+1)]
= Et [mt+1dt+1 + mt+1Et+1[mt+2(dt+2 + pt+2)]]
= Et [mt+1dt+1 + mt+1mt+2(dt+2 + pt+2)]
= Et [mt+1dt+1 + mt+1mt+2(dt+2 + Et+2[dt+3 + pt+3])]
...

= Et

 ∞∑
i=1

 i∏
j=1

mt+j

 dt+i


That is, the price of any stream of cash flows is its discounted
present value. Note that this assumes that the limit of(∏i

j=1 mt+j
)
as i →∞, is finite.



We go through the derivation of the canonical asset pricing
equation in one special case.
The setting is a general equilibrium model, where we posit the
existence of a representative consumer who is maximising his (or
hers) utility of future consumption.
Let ct be the consumption in period t. There is only one asset in
the economy, with price pt and paying dividends of dt in period t.
Let qt be the agents holdings (quantity) of the asset at the
beginning of period t. The consumer is assumed to have wage
income of wt .
It should be easy to verify that the agents budget constraint is

ct + ptqt ≤ (pt + dt)qt−1 + wt

The consumer is assumed to maximise his lifetime expected utility

E0

[ ∞∑
t=1

βtu(ct)
]

where β is a discount factor.



We will close this model by noting that in equilibrium, the demand
of assets is equal to the supply, and we have only one agent,
qt = qt+1 ∀ t.
The problem we want to solve is then

max
{ct ,qt}

E0

[ ∞∑
t=1

βtu(ct)
]

subject to

ct + ptqt ≤ (pt + dt)qt−1 + wt

for t = 0, 1, 2, · · · .
This problem can be solved in a number of ways, the most
standard being by dynamic programming. But let us look at what
may be the simplest, doing the optimisation directly by forming a
Lagrangian:1

L = E0

[ ∞∑
t=1

βtu(ct)−
∞∑

t=1
λt (ct + ptqt − (pt + dt)qt−1 − wt)

]



Take derivatives wrt cr and qr we get

∂L
∂cr

= E0 [βr u′(cr )]− λr = 0

∂L
∂qr

= −λr pr + λr+1(pr+1 + dr+1) = 0

Use the first equation to substitute in the second, and we get a
condition for optimality that will need to hold for any ct .

Et [βtu′(ct)pt ] = Et
[
βt+1u′(ct+1)(dt+1 + pt+1)

]
or

Et

[
β

u′(ct+1)
u′(ct)

(pt+1 + dt+1)
pt

]
= 1

This is usually called the Euler equation in this type of model.



Beta-pricing relations.
We can also use our fundamental equation to look at beta-pricing
style relations. Let us first write (1) in standard return form by
subtracting 1 from the gross return:

rit = Rit − 1

which gives

Et [mt+1ri ,t+1] = 0 (2)

Recall the definition of covariance.

cov(X ,Y ) = E [XY ]− E [X ]E [Y ]

Rewrite this for our variables:

covt−1(mt , rit) = Et−1[mtrt ]− Et−1[mt ]Et−1[rit ]



Solve for Et−1[rit ]:

covt−1(mt , rit) + Et−1[mt ]Et−1[rit ] = Et−1[mtrit ] = 0
⇒ covt−1(mt , rit) + Et−1[mt ]Et−1[rit ] = 0
⇒ −covt−1(mt , rit) = Et−1[mt ]Et−1[rit ]

⇒ −covt−1(mt , rit)
Et−1[mt ] = Et−1[rit ]

or

Et−1[rit ] = covt−1(−mt , rit)
Et−1[mt ]

This is a relationship between the return on any asset with its
covariance with the pricing variable mt . In the case of a
consumption-based model such as the one studied above, the
return on asset i is a function of the asset’s covariance with
consumption.



Special case, CAPM – style relations.
In the previous we found the return on any asset i as a function of
its covariance with the variable mt .

Et−1[rit ] = covt−1(−mt , rit)
Et−1[mt ]

We now want to show how our familiar asset pricing model the
CAPM can be shown to be a special case of this.
Remember that the CAPM specifies a relationship with the market
portfolio. Let us first consider the return on any portfolio p, rpt ,
(not necessarily the market portfolio), with covt−1(rpt ,mt) 6= 0.



From the definition of covariance,

covt−1(rpt ,−mt) = Et−1[−mtrpt ]− Et−1[rpt ]Et−1[−mt ]
= −0 + Et−1[rpt ]Et−1[mt ]
= Et−1[rpt ]Et−1[mt ]

Hence

Et−1[mt ] = covt−1(−mt , rpt)
Et−1[rpt ]

Now substitute for Et−1[mt ] in the equation for Et−1[rit ].

Et−1[rit ] = covt−1(−mt , rit)
Et−1[mt ]

giving

Et−1[rit ] = covt−1(−mt , rit)
covt−1(−mt ,rpt)

Et−1[rpt ]

= covt−1(−mt , rit)
covt−1(−mt , rpt)Et−1[rpt ]

We now have a relationship where the portfolio return appear. Let
us next try to get rid of the pricing variable mt .



Consider replacing mt with an estimate, a function of the returns
of the assets in the portfolio. We use a linear regression on the
vector

Rt =

 R1,t
...

Rn,t


of individual asset returns

mt = ωtRt + εt

By a known result, there is always a vector ωt such that

Et−1[ε′tRt ] = 0

or equivalently

covt−1(Rt , εt) = 0



In this case we can actually calculate this vector ωt : We know

Et [mt+1Ri ,t+1] = 1 ∀ i

or

Et [mt+1Rt+1] = 1

Substitute for mt+1:

Et [(ωt+1Rt+1)Rt+1] = 1

solve for ωt+1:

ωt+1Et [Rt+1Rt+1] = 1

and

ωt+1 = (Et [Rt+1Rt+1])−11



The regression coefficients ωt of this regression are not guaranteed
to sum to one, but we fix that by normalising the weights with the
sum: 1′ωt , where 1 is the unit vector. We then have found
portfolio weights 1

1′ωt
ωt .

Then the return on the portfolio p is

Rpt = 1
1′ωt

ω′tRt

Also note that we can rewrite mt as

mt = 1′ωtRpt + εt

Hence

covt−1(−mt , rit) = covt−1(−(ω′tRt + ε), rit)
= covt−1(−ω′tRt , rit) + covt−1(εt , rit)
= −1′ωtcovt−1(Rpt , rit) + 0
= −1′ωtcovt−1(Rpt , rit)



Use this to get

Et−1[rit ] = covt−1(−mt , rit)
covt−1(−mt , rpt)Et−1[rpt ]

= −1′ωtcovt−1(Rpt , ri ,)
−1′ωtcovt−1(Rpt , rpt)Et−1[rpt ]

= covt−1(rpt , rit)
covt−1(rpt , rpt)Et−1[rpt ]

= covt−1(rpt , rit)
vart−1(rpt) Et−1[rpt ]



Finally, let us posit the existence of some asset z with return Rzt ,
and with covt−1(Rzt ,Rpt) = 0. (usually called the “zero-beta”
asset.)
We can then write

Et−1[rit − rzt ] = covt−1(rpt , rit)
vart−1(rpt) Et−1[rpt − rzt ]

If there is a risk free rate rft , by definition it has
covt−1(rpt , rft) = 0, and we get the CAPM in its usual form

Et−1[rit ]− rft = covt−1(rpt , rit)
vart−1(rpt) (Et−1[rpt ]− rft)

Note that this is a conditional version of the CAPM, it holds given
the current information set.



Factor models, APT

By some more work, we can also get an APT-style relation in asset
returns,

Et [Ri ,t+1] = λ0,t +
K∑

j=1
bijt

covt(Fj,t+1,−mt+1)
Et [mt+1]

as a special case of our generic relation.
The problem with the APT is that it is a relationship that holds for
some “factors,” but we do not know what the factors are.
There are two main methods used in estimation of the APT.
1. Estimate the factors from the data, using one of

1.1 Factor analysis.
1.2 Principal components analysis.

2. Prespecify the factors as economic variables we believe may
influence asset returns.



The above shows how a large number of the models we know can
be viewed as special cases of a relation

Et [rt+1mt+1] = 0

Note that this formula is in the form of the conditional
expectation.
The ability to use conditioning information in a meaningful way is
one of the major breakthroughs in current research in empirical
asset pricing.
In this class we will see how it is done in particular models, and
how recent research differs from the classical tests.
Let me note a couple of ways to use conditioning information

I Use of variables in the information set as instruments in the
estimation.

I Try to model the conditional expectations directly (latent
variables)



Characterising mt directly

Usually, we do estimation in the context of particular asset pricing
model .
In the context of the equation

Et [mt+1Ri ,t+1] = 1

this means putting some structure on mt . Examples: consumption
based asset pricing model, where mt = u′(ct+1)

u′(ct) ,
CAPM a relationship with a reference portfolio.
Alternatively: write mt = f ( ”factor”) (in the factor analysis
spirit),
Example

mt = 1 + berm,t

Another way to ask what factors influence the cross section of
assets.



Exercise

The Stochastic Discount factor approach to asset pricing results in
the follwing expression for pricing any excess return:

E [mterit ] = 0

Consider an empirical implementation of this where we write the
pricing variable m as a function of a set of prespecified factors f :

mt = 1 + bft

Consider the case of the one factor model f = 1 + berm, where the
only explanatory factor is the return on a broad based market
index.
Implement this approach on the set of 5 size sorted portfolios
provided by Ken French. Use data 1926–2012.
Is the market a relevant pricing factor?



Exercise Solution

Reading data

source("read_size_portfolios.R")
source("read_pricing_factors.R")
eRi <- FFSize5EW - RF
data <- merge(eRi,RMRF,all=FALSE)
summary(data)
eRi <- as.matrix(data[,1:5])
eRm <- as.vector(data[,6])



Exercise Solution

The specification of the GMM estimation:

X <- cbind(eRi,eRm)
g1 <- function (parms,X) {

b <- parms[1];
f <- as.vector(X[,6])
m <- 1 + b * f
e <- m * X[,1:5]
return (e);

}



Exercise Solution

Running the GMM analysis

t0 <- c(0.1);
res <- gmm(g1,X,t0,method="Brent",lower=-10,upper=10)
summary(res)



Exercise Solution

> summary(data)
Index Lo20 Qnt2 Qnt3

Min. :1926 Min. :-32.010 Min. :-31.9600 Min. :-31.3100
1st Qu.:1948 1st Qu.: -3.110 1st Qu.: -2.8650 1st Qu.: -2.5550
Median :1970 Median : 0.960 Median : 1.1700 Median : 1.2000
Mean :1970 Mean : 1.373 Mean : 0.9704 Mean : 0.8869
3rd Qu.:1991 3rd Qu.: 4.695 3rd Qu.: 4.5350 3rd Qu.: 4.4050
Max. :2013 Max. :110.670 Max. : 81.1900 Max. : 56.8400

Qnt4 Hi20 RMRF
Min. :-29.760 Min. :-30.100 Min. :-28.980
1st Qu.: -2.470 1st Qu.: -2.195 1st Qu.: -2.105
Median : 1.160 Median : 0.930 Median : 1.010
Mean : 0.787 Mean : 0.655 Mean : 0.628
3rd Qu.: 4.125 3rd Qu.: 3.640 3rd Qu.: 3.655
Max. : 50.010 Max. : 41.790 Max. : 37.770



Exercise Solution

Call:
gmm(g = g1, x = X, t0 = t0, method = "Brent", lower = -10, upper = 10)

Method: twoStep
Kernel: Quadratic Spectral(with bw = 3.56894 )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Theta[1] -0.0199775 0.0060763 -3.2877763 0.0010098

J-Test: degrees of freedom is 4
J-test P-value

Test E(g)=0: 14.606060 0.005592



Exercise Solution

Model 1

Theta[1] −0.02∗∗∗
(0.01)

Criterion function 1411.21
Num. obs. 1035

***p < 0.01, **p < 0.05, *p < 0.1



Exercise
The Stochastic Discount factor approach to asset pricing results in
the follwing expression for pricing any excess return:

E [mterit ] = 0

Consider an empirical implementation of this where we write the
pricing variable m as a function of a set of prespecified factors f :

mt = 1 + bft

Consider the case of the three factor model
f = 1 + b1erm + b2SMB + b3HML, where the explanatory factors
are the return on a broad based market index, and the two Fama
French factors SMB and HML.
Implement this approach on the set of 5 size sorted portfolios
provided by Ken French. Use data 1926–2012.
Which are the relevant pricing factors?



Exercise Solution

Organizing the data

library(gmm)
source("read_size_portfolios.R")
source("read_pricing_factors.R")

eRi <- FFSize5EW - RF
data <- merge(eRi,RMRF,SMB,HML,all=FALSE)
summary(data)
eRi <- as.matrix(data[,1:5])
eRm <- as.vector(data$RMRF)
smb <- as.vector(data$SMB)
hml <- as.vector(data$HML)



Exercise Solution

The GMM specification

X <- cbind(eRi,eRm,smb,hml)
g3 <- function (parms,X) {

b1 <- parms[1];
b2 <- parms[2];
b3 <- parms[3];
erm <- as.vector(X[,6])
smb <- as.vector(X[,7])
hml <- as.vector(X[,8])
m <- 1 + b1 * erm + b2*smb + b3*hml
e <- m * X[,1:5]
return (e);

}



Exercise Solution
Index Lo20 Qnt2 Qnt3

Min. :1926 Min. :-32.010 Min. :-31.9600 Min. :-31.3100
1st Qu.:1948 1st Qu.: -3.110 1st Qu.: -2.8650 1st Qu.: -2.5550
Median :1970 Median : 0.960 Median : 1.1700 Median : 1.2000
Mean :1970 Mean : 1.373 Mean : 0.9704 Mean : 0.8869
3rd Qu.:1991 3rd Qu.: 4.695 3rd Qu.: 4.5350 3rd Qu.: 4.4050
Max. :2013 Max. :110.670 Max. : 81.1900 Max. : 56.8400

Qnt4 Hi20 RMRF SMB
Min. :-29.760 Min. :-30.100 Min. :-28.980 Min. :-16.3900
1st Qu.: -2.470 1st Qu.: -2.195 1st Qu.: -2.105 1st Qu.: -1.5200
Median : 1.160 Median : 0.930 Median : 1.010 Median : 0.0500
Mean : 0.787 Mean : 0.655 Mean : 0.628 Mean : 0.2352
3rd Qu.: 4.125 3rd Qu.: 3.640 3rd Qu.: 3.655 3rd Qu.: 1.7750
Max. : 50.010 Max. : 41.790 Max. : 37.770 Max. : 39.0400

HML
Min. :-13.450
1st Qu.: -1.295
Median : 0.220
Mean : 0.382
3rd Qu.: 1.745
Max. : 35.480



Exercise Solution
Running the GMM analysis

> t0 <- c(1.0,0,0);
gmm(g = g3, x = X, t0 = t0)

Method: twoStep
Kernel: Quadratic Spectral(with bw = 4.83032 )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Theta[1] -0.0133913 0.0086600 -1.5463407 0.1220223
Theta[2] 0.0131771 0.0145060 0.9083904 0.3636720
Theta[3] -0.0778065 0.0264944 -2.9367123 0.0033171

J-Test: degrees of freedom is 2
J-test P-value

Test E(g)=0: 3.51806 0.17221



Exercise Solution

Model 1

Theta[1] −0.01
(0.01)

Theta[2] 0.01
(0.01)

Theta[3] −0.08∗∗∗
(0.03)

Criterion function 339.91
Num. obs. 1035

***p < 0.01, **p < 0.05, *p < 0.1



Exercise

Using the moment condition

E [mterit ] = 0

where

mt = 1 + bft

Using data for 1980-2012, apply this to the one factor model
f = 1 + b1erm and apply it to the set of ten size portfolios at the
OSE.
Is erm a significant determinant for the crossection?
Does it seem sufficient?



Exercise Solutio
Reading the data

# estimate m=1+b*f in crossection
library(zoo)
library(texreg)
Rets <- read.zoo("../../data/equity_size_portfolios_monthly_ew.txt",

header=TRUE,sep=";",format="%Y%m%d")
Rf <- read.zoo("../../data/NIBOR_monthly.txt",

header=TRUE,sep=";",format="%Y%m%d")
Rm <- read.zoo("../../data/market_portfolios_monthly.txt",

header=TRUE,sep=";",format="%Y%m%d")
eRmew <- Rm$EW - lag(Rf,-1)
eR <- Rets - lag(Rf,-1)
# take intersection to align data
data <- merge(eR,eRmew,all=FALSE)
er <- as.matrix(data[,1:10])
erm <- as.vector(data[,11])



Exercise Solutio

The GMM specification of the moment conditions

X <- cbind(er,erm)
g <- function (parms,X) {

b <- parms[1];
f <- as.vector(X[,11])
m <- 1 + b * f
e <- m * X[,1:10]
return (e);

}



Exercise Solution

gmm(g = g, x = X, t0 = t0, method = "Brent", lower = -10, upper = 10)

Method: twoStep
Kernel: Quadratic Spectral(with bw = 3.60168 )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Theta[1] -4.3783e+00 1.0679e+00 -4.1000e+00 4.1321e-05

J-Test: degrees of freedom is 9
J-test P-value

Test E(g)=0: 3.2419e+01 1.6849e-04



Exercise Solution

To answer the two questions:
I the p value of the coefficient is used to answer the first, the

market is a significant determinant.
I the p value of the J test is used to answer the second. Since

we reject the J test, we do not find the one factor to be
sufficient.



Exercise Solution

Model 1

Theta[1] −4.38∗∗∗
(1.07)

Criterion function 8207.37
Num. obs. 395

***p < 0.01, **p < 0.05, *p < 0.1



Exercise

Using the moment condition

E [mterit ] = 0

where

mt = 1 + bft

Using data for 1980-2012, apply this to the three factor model
f = 1 + b1erm + b2SMB + b3HML and apply it to the set of ten
size portfolios at the OSE.
Are the three factors significant determinants for the crossection?
Do they seem sufficient?



Exercise Solution

Rets <- read.zoo("../../data/equity_size_portfolios_monthly_ew.txt",
header=TRUE,sep=";",format="%Y%m%d")

Rf <- read.zoo("../../data/NIBOR_monthly.txt",
header=TRUE,sep=";",format="%Y%m%d")

Rm <- read.zoo("../../data/market_portfolios_monthly.txt",
header=TRUE,sep=";",format="%Y%m%d")

FF <- read.zoo("../../data/pricing_factors_monthly.txt",
header=TRUE,sep=";",format="%Y%m%d")

eRmew <- Rm$EW - lag(Rf,-1)
eR <- Rets - lag(Rf,-1)
data <- merge(eR,eRmew,na.omit(FF$SMB),na.omit(FF$HML),all=FALSE)
er <- as.matrix(data[,1:10])
erm <-as.matrix(data[,11])
SMB <- as.matrix(data[,12])
HML <- as.matrix(data[,13])



Exercise Solution

Doing the GMM

X <- cbind(er,erm,SMB,HML)
g <- function (parms,X) {

b1 <- parms[1]
b2 <- parms[2]
b3 <- parms[3]
m <- 1 + b1 * X[,11] + b2 * X[,12] + b3 * X[,13]
e <- m * X[,1:10]
return (e);

}



Exercise Solution
> t0 <- c(-1,-1,-1)

Call:
gmm(g = g, x = X, t0 = t0)

Method: twoStep
Kernel: Quadratic Spectral(with bw = 3.24629 )

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Theta[1] -3.6594378 1.1744252 -3.1159395 0.0018336
Theta[2] -4.5064637 1.4152014 -3.1843268 0.0014509
Theta[3] -7.4386994 2.9039257 -2.5616011 0.0104191

J-Test: degrees of freedom is 7
J-test P-value

Test E(g)=0: 22.8291039 0.0018254



Exercise Solution
Here see that all three pricing factors are significant, so they are
influencing the crossection.
We also reject that the model is sufficient, the J statistic is
significant.

Model 1

Theta[1] −3.66∗∗∗
(1.17)

Theta[2] −4.51∗∗∗
(1.42)

Theta[3] −7.44∗∗
(2.90)

Criterion function 6039.45
Num. obs. 378

***p < 0.01, **p < 0.05, *p < 0.1
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