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1 Inference, particularly in regression settings
Given a set of estimates, we need to judge our confidence in the estimates, and more generally, in the model
we have specified.

This lecture does so by first going through some very simple examples, illustrating the typical inference
we do, before going back, being very general, talking about the classical testing one does in regression
frameworks:

• Confidence interval estimation

• Confidence region estimation

• Hypothesis tests, the trinity (in film parlance: the trilogy)

– Wald principle: Estimate the model without imposing any restrictions, and then see how far
the estimated parameters are from fulfilling the restrictions implied in the hypothesis.

– Lagrange multiplier principle: Estimate the model imposing the restrictions, and then test
how much relaxing the restrictions improves the fit of the model.

– Likelihood Ratio principle: Estimate both the restricted and the unrestricted forms of the
model, and then compare the fit of the two estimates.

2 Inference in univariate regressions
• What affects accuracy of regressions?

• Confidence intervals

• Hypothesis tests

• Using R-squared

When we use the regression
y = a+ bx+ e

and find the OLS estimates, we have made a number of assumptions

• This is the true model.

• The numbers x are constants, and represent the possible set of x values.

• The uncertainty, or noise, in the relationship, as represented by e, the noise term, satisfy a number of
assumptions.
These assumptions rougly imply that each drawing of ẽ is independent of other drawings of ẽ.
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With enough independence, the distribution of e is “as if” drawn from a normal distribution.
This is what underlies testing in regression models.
The etimates of a and b are functions of normally distributed random variables, and therefore normal.
Recall our earlier univariate setting, where we constructed confidence intervals for the mean µ0 of a

normally distributed variable. From the sample we assume µ̂ is normally distributed with mean x̄ and
standard deviation s.

-

6

x̄

We constructed the variable z = x̄
s√
n

which follows a normal distribution with unit variance.
In testing concerning parameters of regressions we do similar operations.
We construct the probability distribution of for example b in the regression. We then use this sample

probability distribution to make probability statements.

-
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b̂

To do se need estimates of

• Parameters

• Parameter standard deviations / standard errors.

Note that the model is
ỹ = a+ bx+ ẽ

Here, the only random element is ẽ.
The uncertainty of ẽ is its variance

var(e) = E[(e− E[e])2]

The error e has expectation zero, therefore

var(e) = E[e2]

We want to estimate the variance of e, and to do so use the sample equivalent

S2 = 1
n

n∑
i=1

e2
i

However this is not an unbiased estimate, we often divide by n − 2 instead of n to correct for this. (Think
of this as “using up” two pieces of information when estimating a and b.)

2



To find the uncertainty in the estimate of a and b “scale” by the fact that â and b̂ are functions of the
uncertainty in ẽ. We calculate the standard errors of the two parameter estimates as:

sa = S

√ ∑n
i=1 x

2
i∑n

i=1(xi − x̄)2

sb = S

√
1∑n

i=1(xi − x̄)2

where

S =
√
S2 =

√√√√ 1
n

n∑
i=1

e2
i

We can move the estimate of S inside the formulas and also calculate them as

sa =

√
1

n− 2
(
∑n
i=1 e

2
i ) (
∑n
i=1 x

2
i )∑n

i=1(xi − x̄)2

sb =

√
1

n− 2
(
∑n
i=1 e

2
i )∑n

i=1(xi − x̄)2

As soon as we have these standard errors we are ready to do inference.
We can use this standard error to do confidence interval estimation and hypothesis testing just like in

the univariate case as long as we only look at one parameter at the time. This is a very important note to
make. Even in the univariate regression there are two parameters, a and b. Potentially want to consider
these two variables jointly. We will return to this issue later.

2.1 Confidence interval construction
Construct confidence intervals for a and b (one parameter at the time)

(â− dSa, â+ dsa)

(b̂− dSb, b̂+ dsb)

The constant d is a number that depends on the confidence level.
For the usual example, with α = 5%

-
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b̂−1.96 1.96

2.5%
@R

2.5%
�	

if we assume a normal distribution we use d = 1.96.
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2.2 Testing hypotheses about single parameters
Will test hypothesis of the types

a = a0

and
b = b0

To do so construct test statistics
za = â− a0

Sa

and

zb = b̂− b0
Sb

If we use a normal assumption both these test statistics will under the null be normally distributed with
mean zero and variance one, which we can use to test whether the null hypothesis is reasonable given the
data.

2.3 The F test
Another well known test statistic that we will return to later is the F-statistic.

It tests whether the nonconstant terms of the regression is zero, i.e. it compares the two regression
formulations

y = a+ bx+ e

to
y = a+ e

This works by comparing the fit of these two cases. We already have the R2 as a measure of fit, but that
we can not say anything about the signifiance of. The F statistic lets us move to a situation where we can
make probability statements.

In the univariate regression case the F statistic is calculated as

F = (n− 2) R2

1−R2

It has an F distribution F (1, n), i.e. with degrees of freedom of 1 and n, the number of observations.

2.4 Finance example: CAPM
Exercise 1.

You want to apply the CAPM. The CAPM can be written as

E[rit]− rft = βi(E[rmt]− rft

We rewrite this in excess return form, defining erit = rit − rft and ermt = rmt − rft. The CAPM thus imposes

E[erit] = βitE[ermt]

Consider now the regression
erit = αi + βiermt + εit (1)

• Estimate this regression using historical data on the returns on IBM and a stock market index. Use monthly
returns. Take data for 1995:1 to 2006:12.

• Discuss the fit of the model using the R2 of the regression
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• What restriction on the parameters of (1) does the CAPM impose? Test this restriction.

Use R to implement the estimations.
Solution to Exercise 1.

The data is read in. Here the input file contains data aligned on observation date. But some thought necessary here.
The interest rate is observed looking forward, while returns are looking backward from observation date. Also note that
the risk free rate is in annualzed percentages, which need correcting

> rets <- read.table("../data_set/ibm_sp500_95_06.txt",
header=TRUE,sep=";")

> n <- dim(rets)[1]
> rf <- rets[1:n-1,4]/1200
> rm <- rets[2:n,2]
> ibm <- rets[2:n,3]

Calculating execess returns
erIBM,t = rIBM,t − rft

erm,t = rm,t − rft

> er_ibm <- ibm-rf
> er_m <- rm-rf

Plotting one against the other

Running the regression
eribm = a+ berm + e

> mod=lm(er_ibm ~ er_m)

Showing the resulting estimates

> summary(mod)

Call:
lm(formula = er_ibm ~ er_m)

Residuals:
Min 1Q Median 3Q Max

-0.280281 -0.042710 -0.007594 0.037619 0.264997

5



Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.005879 0.006139 0.958 0.34
er_m 1.406461 0.145848 9.643 <2e-16 ***

Residual standard error: 0.07279 on 141 degrees of freedom
Multiple R-squared: 0.3974,Adjusted R-squared: 0.3931
F-statistic: 92.99 on 1 and 141 DF, p-value: < 2.2e-16

We estimate the parameters as
â = 0.005
b̂ = 1.407

Next, plotting the observations and comparing it to the actual regrssion.

> plot(er_m,er_ibm,main="Regressing IBM on SP500")
> lines (er_m,mod$fitted.values)

Check for any obvious problems by calculating the residuals and plotting them against rm:

> plot(er_m,mod$residuals,main="Residuals against SP500")
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Now, what restrictions do the CAPM impose on the parameters? Well, that in this regression a = 0.
Set up a hypotesis test:

H0 : a = a0 = 0
HA : a 6= 0

Here we can use the p-value in the R output:
The intercept, estimated as 0.005879, has a p-value of 0.34. We can thus not reject the null of a zero intercept.

3 Predicting
An important use of regressions is for prediction purposes. So far, in looking at

y = â+ b̂x+ e

we have asked about the significance of estimated â and b̂, which is related to the uncertainty in â and b̂.
A related issue is the uncertainty of the predicted value ŷ.
If you, for a given x = x0, calculated the predicted value

ŷ0 = â+ b̂x0

you are concerned about the confidence of your prediction, which you for example will express in a confidence
interval

[y0 − dSy, y0 + dSy]

so, how do you calculate Sy?
You need the variance of the difference between ŷ and its true value y.
Since ŷ = â+ b̂x0 + e need to factor in the uncertainty of the estimators â and b̂,

var(ŷ0 − y0) = var(â− a) + var(b̂− b) + 2cov(â− a, b̂− b) + var(e)

It can be shown that this quantity is calculated as

var(ŷ0 − y0) = σ2
(

1 + 1
n

+ (x0 − x̄)2

Sxx

)
The important featur of this relationship is that it increases in the distance between x0 and the mean x, x̄.
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Confidence bands for prediction of y
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Lesson to take home: Predictions get progressively more uncertain the futher you go from the values of
x used to generate the estimates â and b̂.

4 Summarizing
Regression estimated variance

S2 = 1
n

n∑
i=1

e2
i

S =
√
S2 =

√√√√ 1
n

n∑
i=1

e2
i

Parameter Standard Errors

sa = S

√ ∑n
i=1 x

2
i∑n

i=1(xi − x̄)2

sb = S

√
1∑n

i=1(xi − x̄)2

Confidence intervals
(â− dSa, â+ dsa)

d: function of confidence level Hypothesis test (of the form)

a = a0

Construct test statistics
za = â− a0

Sa

za ∼ N(0, 1)

Testing for whether x explains y

F = (n− 2) R2

1−R2

5 References
?
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6 Inference in multivariate regressions
6.1 Finance Example
Exercise 2.

You want to measure the risk of an equity position on IBM. In a series of papers Eugene Fama and Ken French
has introduced an alternative asset pricing model to the CAPM, the three factor model, where expected returns
follows:

E[rit]− rft = β1(E[rmt]− rft + b2SMBt + b3HMLt

Defining erit = rit − rft and ermt = rmt − rft, we consider the regression

erit = αi + b1ermt + b2SMBt + b3HMLt + εit (2)

You have access to the time series of these variables on the course homepage. The data is for the period 1995:1
to 2005:12.

• Estimate this regression using historical data on the returns on IBM.

• Discuss the fit of the model using the R2 of the regression.

• Which of the tree factors seem important for pricing of IBM?

Use R to implement the estimations.
Solution to Exercise 2.

Reading the data:

> rets <- read.table("../data_set/ibm_ff_95_05.txt",header=TRUE,sep=";")
> erIBM <- rets$erIBM
> RMRF <- rets$RMRF/100
> HML <- rets$HML/100
> SMB <- rets$SMB/100

Doing the analysis:

> mod <- lm( erIBM ~ RMRF + HML + SMB)

Call:
lm(formula = erIBM ~ RMRF + HML + SMB)

Residuals:
Min 1Q Median 3Q Max

-0.306521 -0.047391 -0.007928 0.039860 0.267676

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.007814 0.006986 1.118 0.2655
RMRF 1.170170 0.178451 6.557 1.22e-09 ***
HML -0.422198 0.238618 -1.769 0.0792 .
SMB -0.381568 0.184886 -2.064 0.0411 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07642 on 128 degrees of freedom
Multiple R-squared: 0.387,Adjusted R-squared: 0.3726
F-statistic: 26.93 on 3 and 128 DF, p-value: 1.433e-13
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0078 0.0070 1.12 0.2655

RMRF 1.1702 0.1785 6.56 0.0000
HML -0.4222 0.2386 -1.77 0.0792
SMB -0.3816 0.1849 -2.06 0.0411

Do the usual diagnostics, plot residuals against explanatory variables

> plot (mod$residuals,RMRF)
> plot (mod$residuals,HML)
> plot (mod$residuals,SMB)
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Observe the R2 of the regression. R2 = 38.7%.
To say something about what are the important factors relevant for the pricing of IBM, use the estimates of the

standard deviations of the various parameters.
The t-values are the basis for most inference, and they are typically printed out by standard econometric packages.
Another typical way of reporting this is by finding the probability values
In terms of the results find that RMRF very significant. SMB significant at the 5% level, with a p value of 4.1%, while

HML not significant, p value of 7.92%.

6.2 Output overview
The following important output features

Each explanatory variable

• Coefficient estimates

• Standard errors

• t-values

• p-values

– Under a normal distribution
– Under a t-distribution

The whole regression

• R2 and Adjusted R2.

• F test (with p-value)

This is typically the situation you face. after having done your regression, you are faced with this output.
What do you do with it?
Let us go over each of the elements printed.
Coefficient estimates: â, b̂1, b̂2, ... , b̂k.
These are variables of main interest, which you would use for prediction purposes

y0 = â+ b̂x0
1 + b̂2x

0
2 + . . .+ b̂kx

0
k

If you want to do inference, you need to look at the other calculated numbers.
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Standard errors for each parameter si: standard error of estimate b̂i.
T values calculated as ti = b̂i

si

The t-values are used for testing the hypothesis that bi = 0.
The last two columns gives the actual probability values for this test, p(z > |ti|H0) i.e. probability of

observing that t value under the null hypothesis that bi = 0.
Note that most computer packages test H0 : bi = 0 against the alternative HA : bi 6= 0, but some may

do the one sided calculation for the test H0 : bi > 0 agains HA : bi ≤ 0.
Note that the calculation of standard errors are conceptually different, because you also need to consider

the fact that estimates of bi and bj are correlated
cov(bi, bj) 6= 0 execpt in very special circumstances.
In practice, done as follows

σ2 = var(e)

σ̂2 = 1
n− k

(y−Xb̂)′(y−Xb̂) = SSR/(n− k)

V = var(b̂) = S2(X′X)−1

6.3 Doing statistical inference on individual parameters
To do statistical inference on one coefficient at the time is exactly like the univariate regression case, you
use the estimated b̂i and its estimated standard error si in exactly the same manner.

To construct a 95% confidence interval you calculate

ci(b̂i) = [b̂i − dŝi, b̂i + dŝi]

where d follows from the usual considerations of confidence level and assumed distribution.
Under the normal distribution and α = 95%, d = 1.96, but with other confidence levels and other

distributional assumptions d is something else.
Similarly , to test a hypothesis

H0 : bi = b0i

we again construct

zi = b̂i − b0i
ŝi

and find the critical level from the size of the test.
With the usual 5% size and normality, test whether |z| > 1.96.
Will look at some examples of this, but first, look at the other reported numbers for the whole regression.

6.4 R2

In the univariate regression we calculate

SSR =
n∑
i=1

(yi − (a+ bxi))2

TSS =
n∑
i=1

(yi − ȳ)2

and find
R2 = 1− SSR

TSS

The analogous calculation is done in the multivarate regression
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SSR =
n∑
i=1

(yi − (a+ b1x1i + b2x2i + b3x3i + . . .+ bkxki))2

TSS =
n∑
i=1

(yi − ȳ)2

and find
R2 = 1− SSR

TSS

The R2 for multivariate regressions is thus calculated exactly as for the univariate case, and has the same
interpretation.

It measures how much better the regression does in explaining the data than the naive estimate of setting
y equal to its mean ȳ, which can also be written as

y = a+ e

In the multivariate case R2 has an unfortunate property, though. R2 will never decrease when additional
variables are added. Even if one potential explanatory variable is pure noise R2 does not fall and typically
rise when it is added to the regression.

The reason is that adding variables to minimize over will never hurt the SSE(b). Therefore one often
tries to correct for this problem by calculating

6.5 The Adjusted R2

R̄2 = 1− n− 1
n− k

(
1−R2)

The adjusted R̄2 will fall if you add variables unrelated to y, and may become negative.

7 Hypothesis testing in regressions
7.1 The F test
Finally, see reported the F-value, and its p-value.

Recall from earlier, we looked at the univariate case, and compared

y = a+ bx+ e

to
y = a+ e

The F test is a formal test for whether b = 0. It is better than the R2 because it is possible to formally say
something about significance.

For a multivariate regression

y = a+ b1x1 + b2x2 + ...+ bkxk + e

The F test compares this to
y = a+ e

i.e. it is a joint test of the null
H0 : b1 = b2 = . . . bk = 0
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Note that while in the univariate case the test is equivalent to a univariate test of whether b = 0 this is
not the case in the multivariate case. Here we test several restrictions at the same time. This is therefore a
meaningful extension of the t-values, which only test one parameter at the time.

The F statistic is calculated as

F = (n− k)
r

R2

1−R2

It has an F distribution F (r, n− k), which can be used to make probability statements.
Exercise 3.

You consider pricing of IBM stock using the Fama French three factor model.

eribm,t = a+ b1erm,t + b2SMBt + b3HMLt + et

Test whether the thee explanatory factors erm,t, SMBt and HMLt has any explanatory power, i.e, test the
hypothesis b1 = 0, b2 = 0 and b3 = 0 jointly. Use monthly returns data on IBM and data for the three factors
from the course homepage. The data is for 1995:1 to 2005:12. Use R to implement the estimations.
Solution to Exercise 3.

This is often termed the F test, and is the result which is always printed in regression outputs, It is calculated as

F = (n− k)
r

R2

1−R2

It has an F distribution F (r, n− k).
This is the printout of the regression estimation in R.

> mod2 <- lm( erIBM ~ RMRF + HML + SMB )
> summary(mod2)

Call:
lm(formula = erIBM ~ RMRF + HML + SMB)

Residuals:
Min 1Q Median 3Q Max

-0.306521 -0.047391 -0.007928 0.039860 0.267676

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.007814 0.006986 1.118 0.2655
RMRF 1.170170 0.178451 6.557 1.22e-09 ***
HML -0.422198 0.238618 -1.769 0.0792 .
SMB -0.381568 0.184886 -2.064 0.0411 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07642 on 128 degrees of freedom
Multiple R-squared: 0.387,Adjusted R-squared: 0.3726
F-statistic: 26.93 on 3 and 128 DF, p-value: 1.433e-13

The F statistic in this regression is exactly the test we want. It is a test of the null that all coefficients except the
intercept is zero.

The P-value of the F test is essentially zero. We reject the null of all coefficients being zero.
Note that this F statistic is only usable when we test whether all the coefficients are jointly zero. It can not be used

when testing whether only some of the coeffients are zero.
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7.2 Hypotheses involving selected parameters
Testing hypotheses involving more than one parameter.

We have seen how to do hypothesis tests involving one parameter in a regression of the form bi = b0i ,
which can be tested by constructing

zi = b̂i − b0i
si

where b̂i is the estimated parameter, and si an estimate of the parameter standard error.
However, many hypotheses involve more than one parameter.
Suppose you have two alternative specifications

y = a+ b1x1 + b2x2 + b3x3 + b4x4 + e (3)

and
y = a+ b1x1 + b2x2 + e (4)

i.e. you believe that the last two explanatory variables (x3 and x4) are irrelevant for explaining y. This is a
joint hypothesis that b3 = b4 = 0.

You cannot test this hypothesis by the estimated standard errors for b3 and b4 alone

• What if one is significant?

• How do you deal with covariablity between b̂3 and b̂4?

There are several ways one can test hypotheses involving several parameters. Essentially we compare the
fit of the two specifications, and ask wheterh the difference is significant.

As a practical matter, there are several different ways of asking that particular question in practice.
There are three general approaches.

1. Wald principle: Estimate the unrestricted model, then ask how much it “hurts” to impose the null (in
the example setting b3 = b4 = 0. )

2. Lagrange Multiplier principle: Estimate the restricted model, then ask how much we would “gain” if
we allowed the parameters to move away from the null.

3. Likelihood Ratio principle: Estimate both the restricted and unrestriced models. Then compare the
fit of the two models.

In theory, they should all give the same conclusions, at least asymptotically (as the sample gets larger)
The choice between them is made by practical considerations.
We will look at the likelihood ratio priciple, the one that requires estimation of two regressions, one

restricted and one unrestricted. In the example we would estimate both (3) and (4) and then calculate

LR =
1
r

(
SSE

(
b̃
)
− SSE

(
b̂
))

1
n−kSSE

(
b̂
)

where b̃ is the restricted estimate and b̂ the unrestricted, r the number of restrictions, k the number of
parameters, and n the number of observations.

In the example
r = 2
k = 5

b̃ =

 a
b1
b2


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b̂ =


a
b1
b2
b3
b4


LR ∼ F (r, n− k) in small samples, and LR ∼ χ2(r) in large samples.
Exercise 4.

You consider pricing of IBM stock. You have two alternative models in mind. One is a single factor model

eribm,t = α+ βerm,t + et

where the excess return of IBM (eribm,t only depends on one factor, the excess return on a market portfolio erm,t.
The other model you have in mind is Fama And French’es three factor model

eribm,t = a+ b1erm,t + b2SMBt + b3HMLt + et

Using monthly returns data on IBM and data for the three factors from the course homepage, estimate the two
models. Note that data is for 1995:1 to 2005:12.

Compare the R2 of the two models.
You wonder if the first model is “good enough”, and you want to formally test whether the one factor model

is a sufficient description of IBM’s returns.
Do this as a hypothesis test, where the null hypothesis is that the first model is enough.
That is, you want to test H0 : b2 = 0 and b3 = 0.
(Hint: This is a joint test, which can not be solved by looking at the coefficients b1 and b2 in isolation.)

Solution to Exercise 4.

> library(xtable)
> library(car)
> rets <- read.table("../data_set/ibm_ff_95_05.txt",header=TRUE,sep=";")
> erIBM <- rets$erIBM
> RMRF <- rets$RMRF/100
> HML <- rets$HML/100
> SMB <- rets$SMB/100

> mod1 <- lm( erIBM ~ RMRF )
> summary(mod1)

Call:
lm(formula = erIBM ~ RMRF)

Residuals:
Min 1Q Median 3Q Max

-0.27138 -0.04877 -0.01114 0.04386 0.26441

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.004327 0.006810 0.635 0.526
RMRF 1.293020 0.150306 8.603 2.18e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07731 on 130 degrees of freedom
Multiple R-squared: 0.3628,Adjusted R-squared: 0.3579
F-statistic: 74 on 1 and 130 DF, p-value: 2.18e-14
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0043 0.0068 0.64 0.5263

RMRF 1.2930 0.1503 8.60 0.0000

> mod2 <- lm( erIBM ~ RMRF + HML + SMB )
> summary(mod2)

Call:
lm(formula = erIBM ~ RMRF + HML + SMB)

Residuals:
Min 1Q Median 3Q Max

-0.306521 -0.047391 -0.007928 0.039860 0.267676

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.007814 0.006986 1.118 0.2655
RMRF 1.170170 0.178451 6.557 1.22e-09 ***
HML -0.422198 0.238618 -1.769 0.0792 .
SMB -0.381568 0.184886 -2.064 0.0411 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07642 on 128 degrees of freedom
Multiple R-squared: 0.387,Adjusted R-squared: 0.3726
F-statistic: 26.93 on 3 and 128 DF, p-value: 1.433e-13

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0078 0.0070 1.12 0.2655

RMRF 1.1702 0.1785 6.56 0.0000
HML -0.4222 0.2386 -1.77 0.0792
SMB -0.3816 0.1849 -2.06 0.0411

Now the hypothesis test. Need to specify it in matrix form:

> R = rbind(c(0,0,1,0),c(0,0,0,1))
> r=c(0,0)
> R = rbind(c(0,0,1,0),c(0,0,0,1))
> r=c(0,0)
> print(R)

[,1] [,2] [,3] [,4]
[1,] 0 0 1 0
[2,] 0 0 0 1
> print(r)
[1] 0 0

And now finally performing the test:

> linearHypothesis(mod2,R,r)
Linear hypothesis test

Hypothesis:
HML = 0
SMB = 0

Model 1: restricted model
Model 2: erIBM ~ RMRF + HML + SMB
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Res.Df RSS Df Sum of Sq F Pr(>F)
1 130 0.77693
2 128 0.74743 2 0.029508 2.5267 0.0839 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

At the 5% level we do not reject the null, and accept the one factor model as a sufficient explanation.

7.3 Summarizing
Full regression specification test “The” F test

F = (n− k)
r

R2

1−R2

Comparison
y = a+ b1x1 + b2x2 + ...+ bkxk + e

and
y = a+ e

Hypotheses involving selected parameters
Restricted model: impose parameter restriction.
Unrestricted model: do not impose parameter restriction.

1. Wald principle: Estimate the unrestricted model, then ask how much it “hurts” to impose the null (in
the example setting b3 = b4 = 0. )

2. Lagrange Multiplier principle: Estimate the restricted model, then ask how much we would “gain” if
we allowed the parameters to move away from the null.

3. Likelihood Ratio principle: Estimate both the restricted and unrestriced models. Then compare the
fit of the two models.

LR =
1
r

(
SSE

(
b̃
)
− SSE

(
b̂
))

1
n−kSSE

(
b̂
)

LR ∼ F (r, n− k) in small samples, and LR ∼ χ2(r) in large samples.

References ?

8 Inference.
We now look at the basics of the typical inference done in econometric analysis.

We have looked at some of the typical analysis that leads to distributional results about the estimated
parameters.

In classical OLS, where
y = Xb + e,

and e is distributed normally with var(e) = σ0I we found that

b̂ols ∼ N (b, σ2
0(X′X)−1)

We will look at this “classical case,”

18



Under the less stringent assumptions used when we discussed asymptotic theory we found that
√
T b̂ols D→ N (b,M−1VTM−1)

where
M = E[XtX′t]

VT = var
(

T∑
t=1

xtut

)
,

or, M is some kind of average of the x values, and V some kind of average of the covariance matrix of∑T
t=1 xtut. Let me note that the classical OLS assumptions above is a special case of this, since in that case

(iid normal)
E[xtxt] = X′X

var
(

T∑
t=1

xtut

)
=

T∑
t=1

var(xtut)

= E[X′uu′X]
= X′E[uu′]X
= σ2

0X′X

and hence

M−1VTM
−1 = (X′X)−1(σ2

0X′X)(X′X)−1

= σ2
0(X′X)−1

thus the asymptotic result is a more general case that includes OLS as a special case.
While it may seem mathematically interesting to know that the limiting distribution is normal, so far it

is not easy to see the practical relevance of these results.
But they are used when we want to assess how reliable our estimates are, and they are therefore the most

important part of econometrics, because the distributions are used to test hypotheses that are relevant from
the view of economic theory about the parameters of interest.

Thus, one of the important parts of the inference procedures in econometrics is to estimate covariance
matrices of the general from

DT = M−1VTM−1

The procedures for doing this estimation is discussed elsewhere, but once this is done, the issue is how to
answer the relevant questions, which means we have to figure out what are the relevant questions?

9 Confidence in parameter estimates.
Issue: How confident can we be about our estimates? For example, if we have estimated a linear model with
two parameters,

yt = b0 + b1xt + et,

and found parameter estimates
yt = 2 + 0.5xt + et

Without an estimated covariance matrix for

b =
[
b0
b1

]
=
[

2
0.5

]

19



we know little about the relation between y and x.
If we knew that

cov(b) =
[

0.5 0
0 0.1

]
we know that the estimates are much more precise than would be the case if e.g.

cov(b) =
[

2 0
0 1

]
In the latter case we do not have any reason to think that there is a significant relation between y and x,
whereas in the former case we could say with a reasonable degree of confidence that y is related to x.

The two main techniques we are concerned with to answer these questions is confidence intervals/regions
and hypothesis testing.

10 Construction of confidence regions.
From basic statistics we know how to interpret confidence intervals for a parameter such as a sample mean,
where we would be given a mean and a standard deviation, eg, we are given the report

µ̂ = 0.5 + /− 0.25,

we construct a confidence interval

[a, b] = [0.5− c · 0.25, 0.5 + c · 0.25],

where c is some constant which will depend on a parameter α( typically, α is 5 percent). The interpretation
of α is that we assess the probability that the confidence interval covers the true parameters as (1− α). In
the typical (normal) case with α = 5%, c would be 1.96, and the confidence interval would be

[0.5− 1.96 · 0.25, 0.5 + 1.96 · 0.25] = [0.01, 0.99]

A α percent confidence region has a similar interpretation. We look at two or more parameters jointly,
and look at the probability that the confidence region covers the true parameters.

CONFIDENCE REGIONS

6

-

(b̂0, b̂1).

'

&

$

%
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To construct a confidence interval for one parameter, let us take the standard OLS example, where we
have shown

b̂ols ∼ N
(
b, σ2(X′X)−1

)
To find the standard deviation of one parameter, we would look at the diagonal of

V̂ = σ2(X′X)−1

For example, if we have two parameters b1 and b2, V̂ would have the form:

V̂ =
[
σ̂2

1 σ̂12
σ̂21 σ̂2

2

]
,

and we would use the diagonal element to construct one parameter confidence intervals,

[b1 − cσ̂1, b1 + cσ̂1]

To be conservative, we could use the t-distribution instead of the normal to find the parameter c.
Confidence regions take somewhat more work to construct, since we need to summarize the probability

of being in a region.
We use the fact that the product of squared normals are chi-squared distributed to construct univariate

random variables from the multivariate distributed b̂, either

b̂ ∼ N (b, σ2(X′X)−1)

or the asymptotic case
b̂ ∼A N (b,V)

Let V be the parameter covariance matrix (either exact or asymptotic). The quantity

(b̂− b)′V−1(b̂− b)

is chi-square distributed.
To show this we use the following useful result

Exercise 5.
Let

x =


x1
x2
...
xn


have a normal distribution with mean zero and variance covariance matrix V .

x ∼ N(0, V )

Claim:
x′V −1x ∼ χ2

Show this claim.
Solution to Exercise 5.

To see this, we use the result about N(0, 1) variables:
If x ∼ N(0, 1), then x′x ∼ χ2

n.
Since V is symmetric, positive definite, there is a matrix (V 1

2 ) (the square root matrix) such that

V
1
2 V

1
2 = V
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Let
V −

1
2 = (V

1
2 )−1

Consider
V −

1
2 x

Claim: The covariance matrix of V − 1
2 x is I:

E[(V −
1
2 x)(V −

1
2 x)′]

= E[V −
1
2 xx′V −

1
2 ]

= V −
1
2E[xx′]V −

1
2

= V −
1
2 V V −

1
2

=
(
V −

1
2 V

1
2

)(
V −

1
2 V −

1
2

)
= II = I

but then
V −

1
2 x ∼ N(0, I)

and
(V −

1
2 x)′(V −

1
2 x) = x′V −

1
2 V −

1
2 x = x′V −1x

has a chi-square distribution.
To construct the confidence region, would look at what values of b would make this chi-square statistic

less than some critical value, which is found from a chi-square distribution.
Note that you can not take the one-dimensional critical values to construct a hypercube between those

values. The true confidence region adjust for the cross-terms in the parameter covariance matrix. (See
discussion in (?, pg 74-77).)

Confidence region, intervals.

6

-

(b̂0, b̂1).&%
'$

11 Test of hypotheses.
Once you move beyond two (or maybe three) dimensions in construction of confidence regions, it becomes
extremely hard to visualize these regions.

An alternative to checking whether a variable or a combination of variables lies in a confidence region is
to construct hypothesis, and construct a test statistic that checks whether the data supports the hypothesis.
Exercise 6.
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Suppose we have a time series of observations of variables x and y, indexed by time t:

{(xt, yt)}Tt=1

Suppose we want to know whether we can use past observations of x and y to predict y.

1. Write down a linear regression with the current value of y, yt as the dependent variable and the previous
two periods observations of x and y as explanatory variables.

2. If our null hypothesis is that past values of x has no predictive power for y, write down the null hypothesis
you will test.

Solution to Exercise 6.
1. The linear regression on lagged variables

yt = c+ α1yt−1 + α2yt−2 + β1xt−1 + β2xt−2 + εt

In this formulation we have used two lags (past observations). We can of course use more.
2. If our null hypothesis is that x has no predictive power for y, we would write a null hypothesis

H0 : β1 = β2 = 0

This particular test is one way to implement what is called the test of Granger Causality. A variable (x in this case)
is said to Granger Cause another variable (y in this case) if we reject the null hypothesis, otherwise we conclude
that x does not Granger cause y.

For further discussion about Granger Causality, see (?, pg 304), (?, Ch 18.2)
Once the hypothesis we want to investigate has been formulated, there is a number of ways to proceed,

but most of them are based on three basic principles, which is what we investigate next.

12 The three classical test statistics.
Almost all test statistics we will look at in this course is based on three general principles: The Wald,
Lagrange multiplier and likelihood ratio principles.

• Wald principle: Estimate the model without imposing any restrictions, and then see how far the
estimated parameters are from fulfilling the restrictions implied in the hypothesis.

• Lagrange multiplier principle: Estimate the model imposing the restrictions, and then test how
much relaxing the restrictions improves the fit of the model.

• Likelihood Ratio principle: Estimate both the restricted and the unrestricted forms of the model,
and then compare the fit of the two estimates.

Comments

• Asymptotically, all these test statistics are equivalent, i.e. as the sample size increases, they will all
give the same answers.

• In finite samples, the test statistics will have different values.

• It is advised to calculate all three of these statistics in applications, if it is feasible. (The Likelihood
Ratio is often “better,” but that is also the most expensive in terms of computing)

• If you have to choose between them, this choice is usually made from practical considerations. It is
often easier to estimate either the restricted or the unrestricted model, and the choice of test statistic
will reflect this.

– If the restricted model is easier to estimate, use the LM test.
– If the unrestricted model is easier, use the Wald test.
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12.1 Construction of the Wald test.
Remember the result we used in constructing the confidence region, that a quadratic form in unit normal
variables has a chi-square distribution, so if v ∼ N (0,Ω) then v′Ω−1v ∼ χ2. Hence, if

b̂ ∼ N (b,V),

then
(b̂− b) ∼ N (0,V),

and
(b̂− b)′V−1(b̂− b) ∼ χ2(k)

if b is a k-vector.
When we are testing a hypothesis, we impose restrictions on the parameters that will reduce the dimen-

sionality of the test statistic.
We start by writing the restrictions on the form

R(b) = 0,

where R(·) is some (maybe nonlinear) function of the parameters b.
The simplest case is a linear restriction, which is written as

Rb = r

where R is a matrix and r is a vector. For example, let

b =


b1
b2
b3
b4


Consider testing

H0 : b1 = 0

In this case we let the other parameters b2 · · · b4 vary freely, and only test whether b1 equals zero. To write
this linear restriction of the above form

Rb− r = 0

Let
R = [1, 0, 0, 0]

r = [0]

Then
Rb− r = 0

reduces to

[1, 0, 0, 0]


b1
b2
b3
b4

− [0] = [0]

or
b1 = 0

Claim: Under the null,
E[Rb̂− r] = 0
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E[Rb̂− r] = E[Rb̂]−Rb0 + Rb0 − r]
= E[R(b̂− b0)] + (Rb0 − r)
= RE[b̂− b0] + (Rb0 − r)
= 0

since
E[b̂− b0] = 0

which is the case if b̂ is unbiased, and
Rb0 − r = 0

by hypothesis.
Hence

(Rb̂− r)′A(Rb̂− r)

will have a chi-square distribution if we can find A such that

A−1 = var
(

Rb̂− r
)

To see how we find this covariance matrix, let us look at how we find it in the simple example above.

Rb− r = 0

where

b =


b1
b2
b3
b4


b ∼ N (b0,V)

R = [1, 0, 0, 0]

r = [0]

Performing the multiplication, we found that

Rb− r = b1

Thus, in this case,
var (Rb− r) = var(b1)

Since
b ∼ N (b0,V),

where V has the form:

V =


σ2

1 σ21 σ31 σ41
σ12 σ2

2 σ32 σ42
σ13 σ23 σ2

3 σ43
σ14 σ24 σ34 σ2

4


Since we want var(Rb−r), which equals b1 in this case, it should be clear that we are after σ2

1 as the variance
of Rb− r. Note that a simple way to achieve this is to perform the transform

RVR′

It turns out that this is true in general, that taking this transform of the covariance matrix of the parameters
will give the covariance matrix for the restrictions, which is what we need to get a chi-square distribution.
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Thus, the test statistic
W = (Rb̂− r)′(RVR′)−1(Rb̂− r)

has a chi-square distribution with degrees of freedom equal to the number of restrictions, (or the dimension-
ality of the R transform.)

W ∼ χ2(r)

Let us look at some further examples of linear restrictions, and how they are constructed.
Exercise 7.

Restriction Suppose you are estimating a model

y = Xb + e

where

b =


b1
b2
b3
b4


How would you test the null hypothesis

H0 : b2 = b3

Solution to Exercise 7.

H0 : b2 = b3

is written
b2 − b3 = 0,

or in the form
Rb− r = 0,

where
R = [0, 1,−1, 0]

r =
[

0
0

]
Exercise 8.

Null in a Granger causality test
Let us look at the test for Granger Causality we looked at before. We had

yt = c+ α1yt−1 + α2yt−2 + β1xt−1 + β2xt−2 + εt

Rewrite this in vector form and specify how one would test the hypothesis that x does not Granger
Solution to Exercise 8.

Yt = [yt]

Xt =


1

yt−1
yt−2
xt−1
xt−2



b =


c
α1
α2
β1
β2


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et = [εt]
Then we can write the system as

Yt = X ′tb + et

Recall that we would like to test the hypothesis that β1 = β2 = 0 to check for Granger causality.
We would write this restriction as

Rb− r
where

R =
[

0 0 0 1 0
0 0 0 0 1

]
r =

[
0
0

]

12.2 Lagrange multiplier test.
The LM statistic is calculated by imposing the hypothesis we want to test.

For example, if we consider
y = Xb + e

b =


b1
b2
b3
b4


and we want to test b1 = b2 = 0, we would only estimate the parameters b3 and b4. If we are doing LS,
would estimate

b̃ = arg min
b=(0,0,b3,b4)

SSE(b)

the estimate b̃ is thus a restricted estimate.
In any estimation problems it may be easier to find the restricted estimate, since it has less parameters

to minimize over.
If we let V(b) be the parameter covariance matrix, under the null V(b̃) will consistently estimate V(b).

We will stick to the OLS case, where
V(b̃) = σ2(X′X)−1

σ̂2 = (y−Xb̃)′(y−Xb̃)

Just like before, we will want to calculate a chi-square distributed variable by creating a quadratic form.
Like the Wald statistic, define the restrictions on the form

R(b) = 0,

or in the linear case
Rb− r = 0

Consider the estimation of
y = Xb + e

subject to
Rb− r = 0

To estimate this with least squares without the restrictions, would minimize

b̂ols = arg min
b

(y−Xb)′(y−Xb)
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If we consider the restricted optimimization problem we are minimizing this subject to a constraint, which
we solve by use of a Lagrangian:

min
b,λ

L(b, λ,y,X) = (y−Xb)′(y−Xb) + (Rb− r)′λ

The first order conditions (Kuhn-Tucker conditions) are:

−X′(y−Xb) + Rλ = 0

Rb− r = 0

implying
X′(y−Xb) = Rλ

Consider
X′(y−Xb̃)

Under the null hypothesis (y−Xb) has the same distribution as the error term e, which is normal:

e ∼ N (0, σ2I)

Thus,
var
(
X′(y−Xb̃)

)
will equal

E
[(

X′(y−Xb̃)
) (

X′(y−Xb̃)
)′]

= E
[
X′(y−Xb̃)(y−Xb̃)′X

]
or

E [(X′ee′X)] = X′E [ee′] X = X′σ2IX = σ2X′X

Since
X′(y−Xb) = Rλ

that means that
var(Rλ)

is equal to
var(X′(y−Xb)),

which means that Rλ has a normal distribution

Rλ ∼ N (0, σ2X′X)

By taking the the usual quadratic form in the inverse of the covariance matrix, we find that

LM = (Rλ)′(σ2X′X)−1(Rλ)

has an asymptotic chi-square distributions, with degrees of freedom equal to the dimension of R (the number
of restrictions).

Instead of using the Lagrange multipliers in the LM statistic, we can alternatively write it in its “score
form”

LM = (X′(y−Xb̃))′(σ2X′X)−1 (X′(y−Xb̃)
)

= (y−Xb̃)′X(σ2X′X)−1X′(y−Xb̃)
LM → χ2(r)
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13 The likelihood ratio principle.
We now come to the final of the three classical test statistics, the Likelihood Ratio-like (LR) test.

The principle behind this type of test statistic is to measure the difference in fit for two estimates, one
restricted and one unrestricted.

Suppose we have r restrictions, n observations and k variables to estimate. If we let b̂ be the unrestricted
estimate(which could be used in a Wald type test), and b̃ the restricted estimate(which could be used in an
LM test), we construct

LR =
1
r (SSE(b̃)− SSE(b̂))

1
n−kSSE(b̂)

Note that this is always positive since the objective function for a restricted estimate will always be larger
than the one for an unrestricted estimate.

In large samples,
LR→ χ2(r)

13.1 Finite samples
For most of the arguments here we have relied on asymptotic theory, in which the normal (and chi-square)
distributions are the distributions of interest. The use of these distributions are based on the properties of
an estimator as the size of the sample increases to infinity.

In many statistical texts one will introduce a correction for the fact that we do not really have an infinite
sample. The relevant distributions are the t and the F distributions, which are the finite sample counterparts
of the normal and chi-square distributions.

If you have normality, and a finite sample, you could alternatively use the F distribution instead of the
chi-square distribution. If you want to be conservative, this is usually also a good idea even if you are using
asymptotic theory to justify the chi-square distribution.

The error one makes in using the chi-square is usaully not large

Readings. (?, 3.3,3.4,3.6)

Further Reading. Confidence intervals: (?, 7b)
The original articles on Granger causality are ? and ?.
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