

Estimating CAPM using GMM

Testing the CAPM in a GMM setting

Consider the CAPM relationship, specified by the "moment condition" $% \left({{{\rm{CAPM}}} \right) = {{\rm{CAPM}}} \right)$

 $E[er_{it}] = \beta_i E[er_{mt}]$

where e_{it} is the excess return on an asset or a portfolio, and e_{mt} the excess return on the market portfolio.

One can alternatively specify the CAPM more generally as

$$E[r_{it}] = E[r_{zt}] + \beta_i (E[r_{mt}] - E[r_{zt}])$$

where we let r_{zt} be the return on a "zero covariance" portfolio.

The typical way of testing this relationship, the Black et al. [1972] method, estimates the corresponding regression

 $er_{it} = \alpha_i + \beta_i er_{mt} + \varepsilon_{it}$

and tests whether $\alpha_i = 0$ on an equation by equation basis. Econometically wasteful: the restriction on the constant will hold for all assets, one want to test this jointly, in a multivariate setting. Doing this was proposed by Gibbons [1982], who showed how one could construct a multivariate statistic for testing this. His method was later expanded upon by Gibbons et al. [1989]. These statistic were developed under distributional assumptions that allowed us to use Maximum Likelihood, namely multivariate normality. What if these are not fulfilled, can we still construct a similar test statistic?

This is done in MacKinlay and Richardson [1991] (MR). They construct a test statistic that essentially tests the same restriction, that $\alpha_I = 0$ or that $\alpha_i = E[r_{zt}](1 - \beta_i)$, but in a GMM framework, not a ML.

The setup: The usual regression

$$r_{it} = \alpha_i + \beta_i r_{mt} + \varepsilon_{it}$$

Assume that

$$E[\varepsilon_{it}|r_{mt}]=0$$

Two moment restrictions for each asset *i*:

$$E[\varepsilon_{it}] = E[(r_{it} - \alpha_i - \beta_i r_{mt})] = 0$$

$$E[\varepsilon_{it}r_{mt}] = E[(r_{it} - \alpha_i - \beta_i r_{mt})r_{mt}] = 0$$

The model is exactly identified. We can "stack" these moment conditions and estimate the parameters $\{\alpha_i, \beta_i\}$ of the model, by the usual formulation using sample moments.

The tests discussed in the paper are different ways of testing the parametric restriction $\alpha_i = 0$.

We will show how the GMM framework can be used to test the CAPM in a couple of examples involving US and Norwegian Data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider the 5 (ew) size based portfolios at the US. Estimate the CAPM using GMM with the Mackinlay method. Use data 1926-2012.

1. Does the CAPM seem like a sufficient model for pricing this crossection of stock returns?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
R code to do analysis
Read data
```

```
source("read_pricing_factors.R")
source("read_size_portfolios.R")
eRi <- FFSize5EW - RF
data <- merge(eRi,RMRF,all=FALSE)
eRi <- as.matrix(data[,1:5])
eRm <- as.matrix(data[,6])</pre>
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Index	Lo20	Qnt2	C
Min. :1926	Min. :-32.010	Min. :-31.9600	Min.
1st Qu.:1948	1st Qu.: -3.110	1st Qu.: -2.8650	1st Qı
Median :1970	Median : 0.960	Median : 1.1700	Mediar
Mean :1970	Mean : 1.373	Mean : 0.9704	Mean
3rd Qu.:1991	3rd Qu.: 4.695	3rd Qu.: 4.5350	3rd Qı
Max. :2013	Max. :110.670	Max. : 81.1900	Max.
Qnt4	Hi20	RMRF	
Min. :-29.76	0 Min. :-30.10	0 Min. :-28.980	
1st Qu.: -2.47	0 1st Qu.: -2.19	5 1st Qu.: -2.105	
Median : 1.16	0 Median : 0.93	0 Median : 1.010	
Mean : 0.78	7 Mean : 0.65	5 Mean : 0.628	
3rd Qu.: 4.12	5 3rd Qu.: 3.64	0 3rd Qu.: 3.655	
Max. : 50.01	0 Max. : 41.79	0 Max. : 37.770	

```
Exercise Solution
```

```
First look at the OLS estimates,
low20: (smallest size)
Call:
lm(formula = Lo20 ~ eRm)
Residuals:
   Min 1Q Median 3Q
                                 Max
-18.245 -2.920 -0.618 1.890 76.656
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.47537 0.19852 2.395 0.0168 *
       1.42903 0.03633 39.334 <2e-16 ***
eRm
```

Residual standard error: 6.344 on 1033 degrees of freedom Multiple R-squared: 0.5996,Adjusted R-squared: 0.5992 F-statistic: 1547 on 1 and 1033 DF, p-value: < 2.2e-16

	1	2	3	4	5
(Intercept)	0.475**	0.096	0.096	0.056	-0.004
	(0.199)	(0.077)	(0.077)	(0.051)	(0.029)
eRm	1.429***	1.260***	1.260***	1.164***	1.049***
	(0.036)	(0.014)	(0.014)	(0.009)	(0.005)
Adj. R ²	0.599	0.886	0.886	0.939	0.974
Num. obs.	1035	1035	1035	1035	1035

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

 $^{***}p < 0.01, \ ^{**}p < 0.05, \ ^{*}p < 0.1$

gmm(g = eRi ~ eRm, x = eRm)

Coefficients:

	Estimate	Std. Error	t value	Pr(>
Lo20_(Intercept)	4.7537e-01	1.8122e-01	2.6232e+00	8.
Qnt2_(Intercept)	1.3007e-01	1.0484e-01	1.2406e+00	2.
Qnt3_(Intercept)	9.5565e-02	7.1679e-02	1.3332e+00	1.
Qnt4_(Intercept)	5.6185e-02	5.1781e-02	1.0850e+00	2.
Hi20_(Intercept)	-3.7811e-03	2.7477e-02	-1.3761e-01	8.
Lo20_eRm	1.4290e+00	1.0552e-01	1.3543e+01	8.
Qnt2_eRm	1.3382e+00	5.9089e-02	2.2646e+01	1.5
Qnt3_eRm	1.2601e+00	3.6174e-02	3.4833e+01	7.7
Qnt4_eRm	1.1637e+00	1.9760e-02	5.8889e+01	0.
Hi20_eRm	1.0490e+00	1.1175e-02	9.3867e+01	0.

J-Test: degrees	of freedom is O	
	J-test	P-value
Test E(g)=0:	1.7729137049673e-23	******

	Model 1
Lo20 (Intercept)	0.475 (0.181)***
Qnt2 (Intercept)	0.130 (0.105)
Qnt3 (Intercept)	0.096 (0.072)
Qnt4 (Intercept)	0.056 (0.052)
Hi20 (Intercept)	-0.004 (0.027)
Lo20 eRm	1.429 (0.106)***
Qnt2 eRm	1.338 (0.059) ^{***}
Qnt3 eRm	1.260 (0.036)***
Qnt4 eRm	1.164 (0.020)***
Hi20 eRm	1.049 (0.011)***
Criterion function	0.000
Num. obs.	1035

 $^{***}
ho < 0.01, \ ^{**}
ho < 0.05, \ ^{*}
ho < 0.1$

Now, let us get to the test of whether the intercept is zero: Need to formulate the linear restrictions in matrix form.

```
> R <- cbind(diag(5),matrix(0,5,5))</pre>
> c <- rep(0,5)
> print(R)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1.]
   1
          0
              0
                  0
                      0
                          0
                              0
                                   0
                                       0
                                            0
[2,] 0 1 0 0 0
                          0
                              0
                                   0
                                       0
                                            0
[3,] 0 0 1 0 0
                          0
                              0
                                   0
                                       0
                                            0
[4,] 0 0 0 1 0 0
                              0
                                   0
                                       0
                                            0
       0
                    1
[5.]
   0
            0
                  0
                          0
                              0
                                   0
                                       0
                                            0
> print(c)
[1] 0 0 0 0 0
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and then perform the test:

> linearHypothesis(res,R,c,test="F") Linear hypothesis test

Hypothesis: Lo20_((Intercept) = 0 Qnt2_((Intercept) = 0 Qnt3_((Intercept) = 0 Qnt4_((Intercept) = 0 Hi20_((Intercept) = 0 Model 1: restricted model Model 2: eRi ~ eRm

```
Df Chisq Pr(>Chisq)
1
2 5 13.588 0.01845 *
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Fisher Black, Michael Jensen, and Myron Scholes. The capital asset pricing model, some empirical tests. In Michael C Jensen, editor, *Studies in the theory of capital markets*. Preager, 1972.
- Michael R Gibbons. Multivariate tests of financial models, a new approach. Journal of Financial Economics, 10:3–27, March 1982.
- Michael R Gibbons, Stephen A Ross, and Jay Shanken. A test of the efficiency of a given portfolio. *Econometrica*, 57:1121–1152, 1989.
- A Craig MacKinlay and Matthew P Richardson. Using generalized method of moments to test mean-variance efficiency. *Journal of Finance*, 46:511–27, 1991.