Estimating CAPM using GMM

Testing the CAPM in a GMM setting

Consider the CAPM relationship, specified by the "moment condition"

$$
E\left[e r_{i t}\right]=\beta_{i} E\left[e r_{m t}\right]
$$

where $e r_{i t}$ is the excess return on an asset or a portfolio, and $e r_{m t}$ the excess return on the market portfolio.
One can alternatively specify the CAPM more generally as

$$
E\left[r_{i t}\right]=E\left[r_{z t}\right]+\beta_{i}\left(E\left[r_{m t}\right]-E\left[r_{z t}\right]\right)
$$

where we let $r_{z t}$ be the return on a "zero covariance" portfolio.

The typical way of testing this relationship, the Black et al. [1972] method, estimates the corresponding regression

$$
e r_{i t}=\alpha_{i}+\beta_{i} e r_{m t}+\varepsilon_{i t}
$$

and tests whether $\alpha_{i}=0$ on an equation by equation basis.
Econometically wasteful: the restriction on the constant will hold for all assets, one want to test this jointly, in a multivariate setting. Doing this was proposed by Gibbons [1982], who showed how one could construct a multivariate statistic for testing this. His method was later expanded upon by Gibbons et al. [1989].
These statistic were developed under distributional assumptions that allowed us to use Maximum Likelihood, namely multivariate normality.

What if these are not fulfilled, can we still construct a similar test statistic?
This is done in MacKinlay and Richardson [1991] (MR). They construct a test statistic that essentially tests the same restriction, that $\alpha_{I}=0$ or that $\alpha_{i}=E\left[r_{z t}\right]\left(1-\beta_{i}\right)$, but in a GMM framework, not a ML.

The setup:
The usual regression

$$
r_{i t}=\alpha_{i}+\beta_{i} r_{m t}+\varepsilon_{i t}
$$

Assume that

$$
E\left[\varepsilon_{i t} \mid r_{m t}\right]=0
$$

Two moment restrictions for each asset i :

$$
\begin{aligned}
& E\left[\varepsilon_{i t}\right]=E\left[\left(r_{i t}-\alpha_{i}-\beta_{i} r_{m t}\right)\right]=0 \\
& E\left[\varepsilon_{i t} r_{m t}\right]=E\left[\left(r_{i t}-\alpha_{i}-\beta_{i} r_{m t}\right) r_{m t}\right]=0
\end{aligned}
$$

The model is exactly identified. We can "stack" these moment conditions and estimate the parameters $\left\{\alpha_{i}, \beta_{i}\right\}$ of the model, by the usual formulation using sample moments.

The tests discussed in the paper are different ways of testing the parametric restriction $\alpha_{i}=0$.
We will show how the GMM framework can be used to test the CAPM in a couple of examples involving US and Norwegian Data.

Exercise

Consider the 5 (ew) size based portfolios at the US. Estimate the CAPM using GMM with the Mackinlay method.
Use data 1926-2012.

1. Does the CAPM seem like a sufficient model for pricing this crossection of stock returns?

Exercise Solution

R code to do analysis

Read data

source("read_pricing_factors.R")
source("read_size_portfolios.R")
eRi <- FFSize5EW - RF
data <- merge(eRi,RMRF,all=FALSE)
eRi <- as.matrix (data[,1:5])
eRm <- as.matrix(data[,6])

Index	Lo20	Qnt2	
Min. :1926	Min. : -32.010	Min. : -31.9600	Min
1st Qu.:1948	1st Qu.: -3.110	1st Qu.: -2.8650	st Q
Median :1970	Median : 0.960	Median : 1.1700	Media
Mean :1970	Mean : 1.373	Mean : 0.9704	Mean
3rd Qu.:1991	3rd Qu.: 4.695	3rd Qu.: 4.5350	3rd
$\begin{gathered} \text { Max. } \quad: 2013 \\ \text { Qnt4 } \end{gathered}$	Max. : 110.670 Hi20	Max. : 81.1900 RMRF	Max.
Min. : -29.760	Min. : -30.100	Min. :-28.980	
1st Qu.: -2.470	1st Qu.: -2.195	1st Qu.: -2.105	
Median : 1.160	Median : 0.930	Median : 1.010	
Mean : 0.787	7 Mean : 0.655	Mean : 0.628	
3rd Qu.: 4.125	5 3rd Qu.: 3.640	3rd Qu.: 3.655	
Max. : 50.010	Max. : 41.790	Max. : 37.770	

Exercise Solution

First look at the OLS estimates, low20: (smallest size)

Call:

```
lm(formula = Lo20 ~ eRm)
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-18.245	-2.920	-0.618	1.890	76.656

Coefficients:

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.47537 | 0.19852 | 2.395 | $0.0168 *$ |
| eRm | 1.42903 | 0.03633 | 39.334 | $<2 e-16 * * *$ |

Residual standard error: 6.344 on 1033 degrees of freedom Multiple R-squared: 0.5996,Adjusted R-squared: 0.5992
F-statistic: 1547 on 1 and 1033 DF, p-value: < 2.2e-16

Exercise Solution

	1	2	3	4	5
(Intercept)	$0.475^{* *}$	0.096	0.096	0.056	-0.004
	(0.199)	(0.077)	(0.077)	(0.051)	(0.029)
eRm	$1.429^{* * *}$	$1.260^{* * *}$	$1.260^{* * *}$	$1.164^{* * *}$	$1.049^{* * *}$
	(0.036)	(0.014)	(0.014)	(0.009)	(0.005)
Adj. R	0.599	0.886	0.886	0.939	0.974
Num. obs.	1035	1035	1035	1035	1035
${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$					

Exercise Solution

$$
\operatorname{gmm}(g=e R i \sim e R m, x=e R m)
$$

Coefficients:

	Estimate	Std. Error	t value
Lo20_ (Intercept)	$4.7537 \mathrm{e}-01$	$1.8122 \mathrm{e}-01$	$2.6232 \mathrm{e}+00$
Qnt2_(Intercept)	$1.3007 e-01$	$1.0484 \mathrm{e}-01$	$1.2406 \mathrm{e}+00$
Qnt3_(Intercept)	$9.5565 \mathrm{e}-02$	$7.1679 \mathrm{e}-02$	$1.3332 \mathrm{e}+00$
Qnt4_ (Intercept)	$5.6185 \mathrm{e}-02$	$5.1781 \mathrm{e}-02$	$1.0850 \mathrm{e}+00$
Hi20_(Intercept)	-3.7811e-03	$2.7477 \mathrm{e}-02$	-1.3761e-01
Lo20_eRm	$1.4290 \mathrm{e}+00$	$1.0552 \mathrm{e}-01$	$1.3543 e+01$
Qnt2_eRm	$1.3382 \mathrm{e}+00$	$5.9089 \mathrm{e}-02$	$2.2646 \mathrm{e}+01$
Qnt3_eRm	$1.2601 \mathrm{e}+00$	$3.6174 \mathrm{e}-02$	$3.4833 \mathrm{e}+01$
Qnt4_eRm	$1.1637 \mathrm{e}+00$	$1.9760 \mathrm{e}-02$	$5.8889 \mathrm{e}+01$
Hi20_eRm	$1.0490 \mathrm{e}+00$	$1.1175 \mathrm{e}-02$	$9.3867 e+01$
J-Test: degrees of freedom is 0			
Test $\mathrm{E}(\mathrm{g})=0$:	1.7729137049673	-23 *******	

Exercise Solution

Model 1

Lo20 (Intercept)	$0.475(0.181)^{* * *}$
Qnt2 (Intercept)	$0.130(0.105)$
Qnt3 (Intercept)	$0.096(0.072)$
Qnt4 (Intercept)	$0.056(0.052)$
Hi20 (Intercept)	$-0.004(0.027)$
Lo20 eRm	$1.429(0.106)^{* * *}$
Qnt2 eRm	$1.338(0.059)^{* * *}$
Qnt3 eRm	$1.260(0.036)^{* * *}$
Qnt4 eRm	$1.164(0.020)^{* * *}$
Hi20 eRm	$1.049(0.011)^{* * *}$
Criterion function	0.000
Num. obs.	1035
${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$	

Exercise Solution

Now, let us get to the test of whether the intercept is zero: Need to formulate the linear restrictions in matrix form.
$>R<-\operatorname{cbind}(\operatorname{diag}(5)$, matrix $(0,5,5))$
$>c$ <- rep $(0,5)$
> print(R)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
$[1]$,	1	0	0	0	0	0	0	0	0	0
$[2]$,	0	1	0	0	0	0	0	0	0	0
$[3]$,	0	0	1	0	0	0	0	0	0	0
$[4]$,	0	0	0	1	0	0	0	0	0	0
$[5]$,	0	0	0	0	1	0	0	0	0	0

> print(c)
[1] 00000

Exercise Solution

and then perform the test:
> linearHypothesis(res,R,c,test="F")
Linear hypothesis test

Hypothesis:
Lo20_((Intercept) $=0$
Qnt2_((Intercept) $=0$
Qnt3_((Intercept) $=0$
Qnt4_((Intercept) $=0$
Hi20_((Intercept) $=0$

Model 1: restricted model
Model 2: eRi ~ eRm

```
    Df Chisq Pr(>Chisq)
1
2 13.588 0.01845 *
```

Fisher Black, Michael Jensen, and Myron Scholes. The capital asset pricing model, some empirical tests. In Michael C Jensen, editor, Studies in the theory of capital markets. Preager, 1972.
Michael R Gibbons. Multivariate tests of financial models, a new approach. Journal of Financial Economics, 10:3-27, March 1982.
Michael R Gibbons, Stephen A Ross, and Jay Shanken. A test of the efficiency of a given portfolio. Econometrica, 57:1121-1152, 1989.

A Craig MacKinlay and Matthew P Richardson. Using generalized method of moments to test mean-variance efficiency. Journal of Finance, 46:511-27, 1991.

