
GMM - Generalized method of moments



GMM Intuition: Matching moments



You want to estimate properties of a data set {xt}Tt=1. You assume
that xt has a constant mean and variance.

xt ∼ (µ0, σ
2)

Consider the problem of estimating µ0. We know that

E [xt ] = µ0

What if this is all we are willing to assume?
How can this be used as a basis of estimation?
Why is this called “Matching moments?”



Consider
1
T

T∑
t=1

xt

By a law of large numbers, we will have

lim
T→∞

T∑
t=1

xt = E [xt ] = µ0

Thus, consider
E [xt − µ0] = 0

If we let T increase,

1
T

T∑
t=1

xt − µ0 → 0 as T →∞

Given this, a reasonable way to estimate µ0 is to look at the
solution of

1
T

T∑
t=1

xt − µ = 0,

or take as our estimator

µ̂ = 1
T

T∑
t=1

xt ,

the sample mean, which in this case is the natural estimator.
The name “matching moments” is coming from the fact that e.g.
the expectation is the “first moment,” and by constructing the
“moment condition”

1
T

T∑
t=1

xt − µ = 0,

we are in some sense “matching” the first moment, the expectation
E [xt − µ0] = 0



OLS as GMM



Consider the classical linear model,

yt = x ′tb + ut

Under the standard assumption of E [xtut ] = 0, we have
E [xt(yt − x ′tb)] = 0. In GMM applications, we term these the
moment conditions. These moment conditions will always follow
from our model. Estimation in this case will be to set the sample
equivalent of the moment conditions,

1
T

T∑
t=1

xt
(
yt − x ′tb

)
equal to zero.
1. Show that doing this results in the GMM estimator

b̂gmm
T =

[ T∑
t=1

xtx ′t

]−1 [ T∑
t=1

xtyt

]

and show that this is the same as the OLS estimator in this
case.



We can use this to find the estimated parameters bgmm
T :

1
T

T∑
t=1

xt
(
yt − x ′tb

)
= 0

T∑
t=1

xtyt −
T∑

t=1
xtx ′tb = 0

[ T∑
t=1

xtyt

]
=
[ T∑

t=1
xtx ′t

]
b

b̂gmm
T =

[ T∑
t=1

xtx ′t

]−1 [ T∑
t=1

xtyt

]
Note that the GMM estimator coincides with the OLS estimator in
this case.



General overview of GMM estimation.
The main ingredient of a GMM estimation is a function

h(θ,wt),

with θ parameters to estimate and wt data. We often use the term
“orthogonality condition” about this expectation.
By assumption

E [h(θ0,wt)] = 0

under the true parameters θ = θ0.
Define

YT = {w1,w2, . . . ,wT}

g(θ,YT ) = 1
T

T∑
t=1

h(θ,wt)



If the number of parameters to estimate equals the number of
orthogonality conditions, we can find θ̂ directly as the solution to

g(θ̂,YT ) = 0

Otherwise, if the number of parameters to estimate is less the
number of orthogonality conditions, we can find θ̂ as

θ̂ = arg min
θ

J(θ,YT ) = arg min
θ

g(θ,YT )′WT g(θ,YT )

where WT is some positive definite weighting matrix.



To show consistency of GMM, the main steps will consist of
1. Show

g(θ,YT )→ E [h(θ,w)] for all θ

2. Assume

min E [h(θ0,w)′h(θ0,w)]

is a unique minimum, or alternatively

E [h(θ)] 6= 0 ∀ θ 6= θ0

3. Assume continutiy of h(·)
4. Given this, we argue that

arg min
θ

g(θ,Y)′T WT g(θ,YT ) P→ θ0

We will not go into the details of this argument



Weighting matrix.
What is the matrix WT in

g(θ,YT )′WT g(θ,YT )

The easiest way to see what it should be is to argue by the analogy
to GLS, where we found that

b̂gls = arg min
b

(y− Xb)′˙−1(y− Xb)

The matrix Ω is the covariance matrix of the error terms.
GMM estimation similar, the optimal WT should be an estimate of
the inverse of the covariance matrix of the moment conditions.

WT = Ŝ−1

S = var
(∑

t
h(θ,wt)′h(θ,wt)

)



Weighting matrix.

The weighting matrix WT is an important part of GMM, it is what
makes the method very robust. If we write out

S = var
(∑

t
h(θ,wt)′h(θ,wt)

)

=
∑

i

∑
j

E [h(θ,wt+i )′h(θ,wt+j)],

a kind of average of the error terms.



A particular simple version is to assume independence of the error
terms, which implies that

S =
∑

t
E [h(θ,wt)′h(θ,wt)],

which we would estimate by

ŜT = 1
T
∑

t
h(θ,wt)′h(θ,wt)

Already we see that to estimate the matrix S you need an estimate
of θ, but to estimate θ we need an estimate of S. The way to get
around this circularity is to proceed in steps
1. Estimate θ using the identity matrix I as a weighting matrix.
2. Estimate ŜT using this θ.
3. Re–estimate θ using ŜT as a weighting matrix.



Properties of GMM estimators

The main general results about GMM estimators are that, under
the appropriate regularity conditions,

θ̂T
P→ θ0

√
T (θ̂ − θ0) D→ N (0,V )

where

V =
[
DS−1D′

]−1

D = E
[
∂

∂θ
g(θ,Y)

]
S = covariance matrix of moment conditions.



Testing over-identifying restrictions

Specification of a GMM model will consisting in finding a set of
“moment conditions” which have expectation zero.
It is often the case that the model will supply more moment
conditions than we have parameters to estimate.
Let

E [h(xt , b)] = 0

be the moment conditions. Suppose we have n moment conditions
and r < n parameters to estimate. If the model is correctly
specified, at the true parameters the sample equivalent of the
moment condition will go to zero for all the moment conditions.



Suppose we now use only the first r moment conditions to do the
estimation of the parameters. This will choose parameters θ to set
the sample mean of

T∑
t=1


h1(θ,wt)
h2(θ,wt)

...
hr (θ,wt)

 = 0

where hi (θ,wt) signifies the i ’th element of h(θ,wt).



If the parameters are correct, and the model correctly specified, the
sample mean of the moment conditions that are not used in the
estimation should also be close to zero. If they are not, this is a
sign that the model is not correctly specified. The “test of
over-identifying restrictions” measure this distance from zero of the
“left over” moment conditions, and will reject the model
formulation if this statistic is large. You will often see this test
termed “Hansen’s J-test.”



We construct the test statistic as

J(θ) = gT (θ, y)S−1gT (θ, y)

Since gT (θ) is asymptotically normal with limiting covariance
matrix S, J(θ) is chi-square distributed with degrees of freedom
equal to the number of moment conditions less the number of
parameters to estimate.
The J-test is a test of the model formulation, if

J(θ̂) > critical value,

then we may want to think again about the model formulation.
In practice this test is not very powerful, it can be hard to reject a
mis-specified model using this particular test.



Use of conditioning information.

The ability to use conditioning information in a meaningful way is
one of the major reasons for GMM to be of very wide use.
Note a couple of ways to use conditioning information
I Use of variables in the information set as instruments in the

estimation.
I Try to model the conditional expectations directly (latent

variables)



Running GMM in R

There is a very good implementation of GMM estimation in R,
which covers many of the relevant applications for finance.
Essentially, all the user has to do is to write code for calculation of
the moment conditions, and then R takes care of the rest.
The moment conditions can be specified by writing a function
returning the matrix of moment conditions, or, in the case of a
linear model, by simply writing the linear model in the same way as
a OLS regression.
We will use some examples to illustrate the use of the package.



Consider the model

y = a + bx + ε

Simulate the following model letting x be the numbers from 1 to
10, a = 1, b = 1 and ε is normally distrubuted with mean zero and
variance one.
1. Estimate the model using OLS.
2. Estimate the model using GMM.



The following is the R code which does this, and then the output
of the two estimations.
First simulating the model

x <- 1:10
b <- 1
a <- 1
e <- rnorm(10)
y <- a + b * x + e



Running the OLS regression

reg <- lm(y~x)
summary(reg)



with output
lm(formula = y ~ x)
Residuals:

Min 1Q Median 3Q Max
-2.1606 -0.4692 -0.0490 0.7747 1.5867
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3087 0.7659 1.709 0.126
x 0.9777 0.1234 7.921 4.69e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.121 on 8 degrees of freedom
Multiple R-squared: 0.8869,Adjusted R-squared: 0.8728
F-statistic: 62.74 on 1 and 8 DF, p-value: 4.689e-05
> reg$coefficients
(Intercept) x

1.3087486 0.9776919



and then doing the same using GMM. Note the need to load the
gmm library.

library(gmm)
res <- gmm(y~x,x)
summary(res)

results in the output



gmm(g = y ~ x, x = x)
Method: twoStep
Kernel: Quadratic Spectral
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3087e+00 9.6023e-01 1.3630e+00 1.7290e-01
x 9.7769e-01 1.2273e-01 7.9663e+00 1.6345e-15
J-Test: degrees of freedom is 0

J-test P-value
Test E(g)=0: 4.26970964950873e-29 *******
> res$coefficients
(Intercept) x

1.3087486 0.9776919



Summarizing GMM
Intuition: “Matching Moments”

E [] = 0

(first moment) Also

E [()2 − σ2] = 0

(second moment)
Basis for constructing estimators.
Allow for estimation in many settings where estimation otherwise
impossible.
Generality costs: Less precision when e.g. ML applies.
Important cases:
I Conditional expectations can be the basis for modelling.
I Robust to more general error structure (heteroskedasticity and

autocorrelation robust)



Asset pricing applications

Examples
I Consumption based pricing: mt+1 = β u′(ct+1)

u′(ct)
I CAPM: m = f (rm)
I Fama French: m = f (rm, SMB,HML).
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