
GMM - Generalized Method of Moments
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1 GMM estimation, short introduction
Well know that Maximum Likelihood is generally an optimal method for setting up estimators. If we know
we are in a setting where ML applies, we should be using that. However, there are many cases where ML
can not be applied.

Important cases

• We are not able to specify the actual probability distribution.

• The calculation of the full probability distribution is not feasible.

In both cases we are not able to use neither OLS nor ML. An alternative way of doing estimation is base on
an old idea in statistics, that of “mathcing moments”

I want to spend some time on the analysis of the “Generalized Method of Moments,” not only because I
like it, but also because it is becoming more and more commonly used in current research. Another reason
that we want to spend some time on GMM is that almost all the other methods of analysing data we have
seen so far can be viewed as special cases of GMM. We can thus use the general results about GMM problems
to show results about all these special cases. This is the value of knowing the most general cases, it is easier
to specialize a general case to a special case, than to keep track of 10 different special cases.

Another reason that GMM is so popular is that it is easy to see the mapping from the economic model
to the estimation setup.
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2 GMM intuition: Matching moments
We will start with the intuition of “matching moments.”

Suppose
xt ∼ (µ0, σ

2)

Consider the problem of estimating µ0.
We know that

E[xt] = µ0

What if this is all we are willing to assume?
Consider

1
T

T∑
t=1

xt

By a law of large numbers, we will have

lim
T→∞

T∑
t=1

xt = E[xt] = µ0

Thus, consider
E[xt − µ0] = 0

If we let T increase,
1
T

T∑
t=1

xt − µ0 → 0 as T →∞

Given this, a reasonable way to estimate µ0 is to look at the solution of

1
T

T∑
t=1

xt − µ = 0,

or take as our estimator

µ̂ = 1
T

T∑
t=1

xt,

the sample mean, which in this case is the natural estimator.
The name “matching moments” is coming from the fact that e.g. the expectation is the “first moment,

” and by constructing the “moment condition”

1
T

T∑
t=1

xt − µ = 0,

we are in some sense “matching” the first moment, the expectation

E[xt − µ0] = 0
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3 General overview of GMM estimation.
The main ingredient of a GMM estimation is a function

h(θ, wt),

with θ parameters to estimate and wt data. We often use the term “orthogonality condition” about this
expectation.

By assumption
E[h(θ0, wt)] = 0

under the true parameters θ = θ0. Define

YT = {w1, w2, . . . , wT }

g(θ,YT ) = 1
T

T∑
t=1

h(θ, wt)

If the number of parameters to estimate equals the number of orthogonality conditions, we can find θ̂
directly as the solution to

g(θ̂,YT ) = 0

Otherwise, if the number of parameters to estimate is less the number of orthogonality conditions, we
can find θ̂ as

θ̂ = arg min
θ

J(θ,YT ) = arg min
θ

g(θ,YT )′WT g(θ,YT )

where WT is some positive definite weighting matrix.
To show consistency of GMM, the main steps will consist of

1. Show
g(θ,YT )→ E[h(θ, w)] for all θ

2. Assume
minE[h(θ0, w)′h(θ0, w)]

is a unique minimum, or alternatively

E[h(θ)] 6= 0 ∀ θ 6= θ0

3. Assume continutiy of h(·)

4. Given this, we argue that
arg min

θ
g(θ,Y)′TWT g(θ,YT ) P→ θ0

We will not go into the details of this argument, it is similar to earlier proofs for other cases, but the laws
of large numbers used to show this is somewhat advanced. If you are interested, look at the references given
below.
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3.1 Weighting matrix.
What is the matrix WT in

g(θ,YT )′WT g(θ,YT )
The easiest way to see what it should be is to argue by the analogy to GLS, where we found that

b̂
gls

= arg min
b

(y−Xb)′Ω−1(y−Xb)

The matrix Ω is the covariance matrix of the error terms, and the intution was that the higher the variance
of a particular observation, the lower weight should it be given in the estimation.

A similar result turns out to be the case for GMM estimation, the optimal WT to use should be an
estimate of the inverse of the covariance matrix of the moment conditions.

WT = Ŝ−1

S = var
(∑

t

h(θ, wt)′h(θ, wt)
)

The weighting matrix WT is an important part of GMM, it is what makes the method very robust. If we
write out

S = var
(∑

t

h(θ, wt)′h(θ, wt)
)

=
∑
i

∑
j

E[h(θ, wt+i)′h(θ, wt+j)],

a kind of average of the error terms.
A particular simple version is to assume independence of the error terms, which implies that

S =
∑
t

E[h(θ, wt)′h(θ, wt)],

which we would estimate by
ŜT = 1

T

∑
t

h(θ, wt)′h(θ, wt)

Already we see that to estimate the matrix S you need an estimate of θ, but to estimate θ we need an
estimate of S. The way to get around this circularity is to proceed in steps

1. Estimate θ using the identity matrix I as a weighting matrix.

2. Estimate ŜT using this θ.

3. Re–estimate θ using ŜT as a weighting matrix.

3.2 Properties of GMM estimators.
The main general results about GMM estimators are that, under the appropriate regularity conditions, which
we will not go into,

θ̂T
P→ θ0

√
T (θ̂ − θ0) D→ N (0, V )

where
V =

[
DS−1D′

]−1

D = E

[
∂

∂θ
g(θ,Y)

]
S = covariance matrix of moment conditions.
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3.3 Testing over-identifying restrictions
Specification of a GMM model will consisting in finding a set of “moment conditions” which have expectation
zero. It is often the case that the model will supply more moment conditions than we have parameters to
estimate. Let

E[h(xt, b)] = 0

be the moment conditions. Suppose we have n moment conditions and r < n parameters to estimate. If
the model is correctly specified, at the true parameters the sample equivalent of the moment condition will
go to zero for all the moment conditions. Suppose we now use only the first r moment conditions to do the
estimation of the parameters. This will choose parameters θ to set the sample mean of

T∑
t=1


h1(θ, wt)
h2(θ, wt)

...
hr(θ, wt)

 = 0

where hi(θ, wt) signifies the i’th element of h(θ, wt). If the parameters are correct, and the model correctly
specified, the sample mean of the moment conditions that are not used in the estimation should also be close
to zero. If they are not, this is a sign that the model is not correctly specified. The “test of over-identifying
restrictions” measure this distance from zero of the “left over” moment conditions, and will reject the model
formulation if this statistic is large. You will often see this test termed “Hansen’s J-test.”

We construct the test statistic as

J(θ) = gT (θ, y)S−1gT (θ, y)

Since gT (θ) is asymptotically normal with limiting covariance matrix S, J(θ) is chi-square distributed with
degrees of freedom equal to the number of moment conditions less the number of parameters to estimate.

The J-test is a test of the model formulation, if

J(θ̂) > critical value,

then we may want to think again about the model formulation.
In practice this test is not very powerful, it can be hard to reject a mis-specified model using this particular

test.

3.4 Use of conditioning information.
The ability to use conditioning information in a meaningful way is one of the major reasons for GMM to be
of very wide use.

Note a couple of ways to use conditioning information

• Use of variables in the information set as instruments in the estimation.

• Try to model the conditional expectations directly (latent variables)
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4 OLS as a GMM estimation.
As another example of GMM setup, consider an OLS structure

yt = xtb+ εt

where yt and xt are scalars, and the following are satisfied

E[εt] = 0

E[xtεt] = 0
var(εt) = σ2

Moment condition
E[xtεt] = E[xt(yt − xtb)]

Sample equivalent ∑
t

xt(yt − xtb) = 0

Solve for GMM estimator

b̂GMM =
[∑

t

xtxt

]−1 [∑
t

xtyt

]
If we define the appropriate vectors

x =


x1
x2
...
xn

 , y =


y1
y2
...
yn

 , ε =


ε1
ε2
...
εn


we can write

b̂GMM = (x′x)−1x′y

and
var(ε) = σ2I

Now, what is the standard error of the GMM estimate b̂GMM .
using the result √

T (θ̂ − θ0) D→ N(0, V )

V =
(
DS−1D′

)−1

D = ∂

∂θ
g(θ,Y)

S = cov(moment conditions)
Mapping the OLS example into this notation

θ = b

S = σ2(X ′X)

D = ∂

∂b
x′(y − xb) = x′x

DS−1D = (x′x)(σ2(x′x))−1(x′x) = 1
σ2 (x′x)

(DS−1D)−1 = σ2(x′x)−1

which should be familiar.
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5 Running GMM in R
There is a very good implementation of GMM estimation in R, which covers many of the relevant applications
for finance.

The user has to do is to write code for calculation of the moment conditions, and then R takes care of
the rest. The moment conditions can be specified by writing a function returning the matrix of moment
conditions, or, in the case of a linear model, by simply writing the linear model in the same way as a OLS
regression.

For documentation of the gmm package, see Chaussé (2010).
We will use some examples to illustrate the use of the package.

Exercise 1.
Consider the model

y = a+ bx+ ε

Simulate the following model letting x be the numbers from 1 to 10, a = 1, b = 1 and ε is normally distrubuted
with mean zero and variance one.

1. Estimate the model using OLS.

2. Estimate the model using GMM.

Solution to Exercise 1.
The following is the R code which does this, and then the output of the two estimations.
First simulating the model

x <- 1:10
b <- 1
a <- 1
e <- rnorm(10)
y <- a + b * x + e

Running the OLS regression

reg <- lm(y˜x)
summary(reg)

with output

lm(formula = y ˜ x)
Residuals:

Min 1Q Median 3Q Max
-2.1606 -0.4692 -0.0490 0.7747 1.5867
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3087 0.7659 1.709 0.126
x 0.9777 0.1234 7.921 4.69e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.121 on 8 degrees of freedom
Multiple R-squared: 0.8869,Adjusted R-squared: 0.8728
F-statistic: 62.74 on 1 and 8 DF, p-value: 4.689e-05
> reg$coefficients
(Intercept) x

1.3087486 0.9776919

and then doing the same using GMM. Note the need to load the gmm library.
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library(gmm)
res <- gmm(y˜x,x)
summary(res)

results in the output

gmm(g = y ˜ x, x = x)
Method: twoStep
Kernel: Quadratic Spectral
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3087e+00 9.6023e-01 1.3630e+00 1.7290e-01
x 9.7769e-01 1.2273e-01 7.9663e+00 1.6345e-15
J-Test: degrees of freedom is 0

J-test P-value
Test E(g)=0: 4.26970964950873e-29 *******
> res$coefficients
(Intercept) x

1.3087486 0.9776919
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6 Summarizing GMM
Intuition: “Matching Moments”

E[] = 0

(first moment) Also, potentially
E[()2 − σ2] = 0

(second moment)
Basis for constructing estimators.
Allow for estimation in many settings where estimation otherwise impossible.
Generality costs: Less precision when e.g. ML applies.
Important cases:

• Conditional expectations can be the basis for modelling.

• Robust to more general error structure (heteroskedasticity and autocorrelation robust)

References
Pierre Chaussé. Computing generalized method of moments and generalized empirical likelihood with r. Journal of Statistical

Software, 34(11):1–35, 2010.

9


