The Fama MacBeth '73 type of analysis

The paper by Fama and MacBeth [1973] is important in empirical
finance, much because of its methodological innovation.
Look at the original analyisis, designed to test the CAPM.



CAPM estimation

rj¢ is the return on stock j at time t.

rmet 1S the return on a stock market index m at time t.

rs is the risk free interest rate over the same period.

Define the excess return as the return in excess of the risk free
return.

€y = Fjr — It
€mt = I'mt — I'f
The CAPM specifies
Elrit] = ree + (rme — r&) Bjm,

where Bjm, can be treated as a constant.
This can be rewritten as

E[rjt] — I = (rmt - rft)Bjm
or, in excess return form

Elerjt] = Elermt]Bjm



CAPM estimation ctd
Consider now estimating the crossectional relation
(rig—ree) =ar+ beBjm +ujp j=1,2,...,N
or in excess return form
erig = ar + bfBjm +ujr j=1,2,...,N
Comparing this to the CAPM prediction
erjt = ermtfim
we see that the prediction of the CAPM is:
Ela;] =0

Elbe] = (E[rm] — rr) > 0



CAPM estimation ctd
To test this,

Ela;]=0
E[bt] = (E[rm] — rF) >0

average estimated a¢, by:
Test whether

1 T
?Zat—>0
t=1

1 T
- > b >0
t=1
To do these tests we need an estimate of 3;5. The “usual”

approach is to use time series data to estimate [3;5 from the
“market model”

it = & + Bimmt + €jt

on data before the crossection.



Exercise

Gather the returns of 10 size based portfolios from Ken French
website. Using the data from 1926-2013, do a Fama-MacBeth
analysis, i.e.

Estimate

erit = ar + beBir + et

and test whether a; = 0 and b; > 0.
In doing this use the previous five years to estimate betas using the
market model.



Exercise — Solution

The following computer code will do the trick

source ("../data/read_pricing_factors.R")
source ("../data/read_size_portfolios.R")
eR <- (FFSizelOEW - RF)/100.0
eRm <- RMRF/100.0
n <- length(eRm)
B <- NULL
for (n2 in 61:n) {
nl <- n2-60
regr <- 1lm(eR[nl:(n2-1),] eRm[nl: (n2-1)]1)
betai <- regr$coefficients[2,]
eRi <- eR[n2,]
attributes(betai) <- NULL
attributes(eRi)  <- NULL
regr <- 1m(eRi ~ betai)
b <- regr$coefficients
B <- rbind(B,b)
}
head (B)
colMeans (B)
t.test(B[,11)
t.test(B[,2])



Let us go over this in come detail.
The data has the form

> head(eR)

1926(7) -0.
1926 (8) 0.
1926(9) -0.
1926(10) -0.
1926 (11) -0.
1926 (12) -0.

1926(7) 0.
1926(8) 0.
1926(9) -0.
1926 (10) -0.
1926(11) 0.
1926(12) 0.

> head(eRm)
1926(7) 1
0.0295

Lo10
0141
0478
0048
0443
0150
0327
Dec9
0306
0070
0124
0408
0337
0304

926(8)
0.0263

Dec2
.0183 0
.0239 0
.0111 -0
.0327 -0
.0010 O
.0581 0
Hil0
.0307
.0341
.0044
.0275
.0239
.0273

Dec3

.0135 0.
.0370 0.
.0232 -0.
.0306 -0.
.0010 0.
.0421 0.

Dec4

0124 0
0328 0
0097 -0
0522 -0
0289 0
0211 O

Decbh

.0083
.0281
.0065
.0343
.0304
.0066

O O O O

[ee]

Dec6

.0178
.0434
.0021
.0315
.0365
.0095

1926(9) 1926(10) 1926(11) 1926(12)
0.0262

0.0038

-0.0324

0.0254

Dec?

.0127
.0126
.0184
.0381
.0338
.0207



Let us look at the first round of the loop,

> n2 <- 61
>nl <-1
> regr <- 1lm(eR[n1:(n2-1),]%eRm[ni: (n2-1)])

This runs 10 different regressions on 10 size sorted portfolios

Dependent variable: eRi

(1) (2) 3)

eRm[nl:(n2 - 1)] 1.287"* 1.312** 1.192***
(0.141)  (0.095)  (0.080)

Constant 0.001 —0.009 —0.007
(0.010) (0.006) (0.005)

Observations 60 60 60
Adjusted R? 0.583 0.762 0.791

Note: *p<0.1; **p<0.05; ***p<0.01



We now pull the vector of beta coefficients

> betai <- regr$coefficients([2,]

Lol0 Dec2 Dec3 Dec4 Dech Dec6 Dec7

Dec8 Dec9 Hi10
1.287 1.312 1.192 1.049 1.100 1.129

1.114 1.085 1.100 0.964




This is the explanatory variable in a regression in next-period
returns

eRi <- eR[n2,]
attributes(betai) <- NULL
attributes(eRi)  <- NULL
regr <- 1lm(eRi ~ betai)

vV V V V

(the attributes part is to allow the coefficients to be used as an
explanatory variable.



The results of this regression is

Dependent variable:

eRi
betai 0.041
(0.033)
Constant —-0.116™*
(0.038)
Observations 10
R? 0.162
Adjusted R? 0.057
Residual Std. Error 0.011 (df = 8)
F Statistic 1.544 (df =1, 8)
Note: *p<0.1; **p<0.05; ***p<0.01



The results of the loop in the Fama-Macbeth analysis is then doing
this over and over again, moving a “window” of time over which
we estimate the beta coefficients using the market model, and
using this beta coefficient to predict the return.

> head(B)

(Intercept) betai
b -0.11625046 0.041478451
b 0.19939307 -0.192615845
b -0.29409924 -0.009725232
b 0.07420183 0.021346338
b -0.13722297 0.040692233
b 0.22861050 -0.372036413
> colMeans(B)

(Intercept) betai
-0.006526818 0.013277653



> t.test(B[,1])
One Sample t-test

data: B[, 1]
t = -1.4332, df = 989, p-value = 0.1521
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
-0.015463375 0.002409738
sample estimates:
mean of x
-0.006526818



Regarding the test for the market risk premium we need to specify
the alternative differently, since we are explicitly testing whether it
is positive.

> t.test(B[,2],alternative=c("greater"))
One Sample t-test

data: B[, 2]
t = 2.7907, df = 989, p-value = 0.002681
alternative hypothesis: true mean is greater than O
95 percent confidence interval:

0.005444296 Inf

sample estimates:

mean of x

0.01327765



Summarizing the results

constant  beta
average -0.007  0.013
p.value 0.152 0.002




Econometric issues in Fama MacBeth

The tests across time standard tests, assuming iid.

However, econometric issues in this type of analysis.

Best known: Errors in Variables, since betas are estimated
Solution used by Fama and MacBeth [1973]: Group stocks into
portfolios, reducing estimation error in betas.

A recent overview of econometrics of Panel data in finance,
including Fama Macbeth: ?



Replicating Chen Roll and Ross

As a more involved example of using the Fama and Macbeth type
of methodology, let us look at the replication of a well known
empirical study. In 1986 Chen, Roll and Ross published a paper
where they did a Fama MacBeth type of analysis of US stock
market crossections, asking whether a number of explanatory
variables were risk factors.

We will do a similar analysis updating their data set till today.
Specifically, they use the following explanatory variables

>

vVvvyVvVYVvyyypy

US Inflation

US Treasury bill rate (short term)
US industrial production

US Long term treasury rates
Low-Grade bonds (Baa)

Stock market return

US Consumption (per capita)

Oil Prices



They investigate to what degree these alternative “pricing factors”
can explain the crossection of asset returns.
The factors they use are (slightly simplified)

» 3 — Stock market beta

dIP — change in (log) Industrial Production
Infl — Inflation (change in log cpi)

dinfl — first difference of Inflation (not log)
Term — Term Premium (TermSpread)

Qual — Risk premium (Quality Spread)

vVvyVvVvyyypy

dCons — change in (log) Consumption
» dOil — change in (log) Oil prices
Construct these variables.
We will use as stock market return data for 49 different industry

portfolios (ew) provided by Ken French, and use returns starting in
1970.



We will first do the FM analysis for each of the variables. For
example, for the CAPM beta we analyze

eriy = a+ bgB,T + ejt,

where the betas are estimated using a MM type regression on data
before t, for example five years.

m
erir = aj + Bit €rmr + €ir

using observations T =t —61,--- ,t — L.



For each of the non-beta variables, we will also do an analysis
adding the variable to beta and investigate whether it adds
explanatory power to the CAPM.

For example, for Industrial Production one will estimate

eriy = a+ bgBi + b,-pﬂ;f + ejt,

where the betas are estimated using a MM type regression on data
before t, for example five years.



Reading the original paper it is not clear which version of the MM
regression they do, are we looking at a joint regression

erir = i+ Bl erm: + BPdIP, + 7

using observations 7 =t —61,--- ,t — 1.
or a “factor by factor” type of analysis?

m

erir = o + ,3,‘,_» ermr + Eir
i

erir = o + ﬁ,-fleT + €ir

We will be using this latter version.



Gathering the data

In R, gathering this data is actually relatively simple, as they can
be downloaded from the St. Louis Fed data library FRED.
Specifically, we will download

>

vVvYvyVvyVvyy

>

CPIAUCSL (Cpi)

POP (Population)

DNDGRA3MO086SBEA (Real Consumption)
INDPRO (Industrial Production)
OILPRICE

BAA

DTB3 (3 month t bills)

DGS10 (10 year treasuries)

and use these to construct the data series.



R code for doing the data variable construction

library(stargazer)
library(zoo)
library(quantmod)

source ("../data/read_pricing_factors.R")
source ("../data/read_industry_portfolios.R")
eR <- (FF49IndusEW - RF)/100.0

head(eR)

eR <- window(eR,start=c(1970,1))

eRm <- RMRF/100.0
names (eRm) <- "eRm"
# cpi urban
getSymbols ("CPIAUCSL",src="FRED")
head (CPTAUCSL)
cpi <- CPIAUCSL
head(cpi)
Infl <- diff(log(cpi))
head(Infl)
Infl <- zooreg(coredata(Infl),order.by=as.yearmon(index(Infl)))
names (Infl)<-"Infl"
head(Infl)
#plain difference, not log, inflation m
dInfl <- diff(Infl)
names (dInfl)<-"dInfl"
# total US population
ot vuvmhAnle ("DAP" cvrr ~="FTREN")



Let us first illustrate the R code for doing the simplest possible
Fama Macbeth analysis, a single estimation of the CAPM

library(stargazer)
library(zoo)
library(quantmod)

source ("../data/read_pricing_factors.R")
source ("../data/read_industry_portfolios.R")

eR <- (FF49IndusEW - RF)/100.0

length(eR)

head(eR)

eRm <- RMRF/100.0

head (eRm)

eR <- window(eR,start=c(1970,1),end=c(2014,1))

data <- merge(eR,eRm,all=FALSE)

ER <- datal,1:49]
ERM <- datal,50]
head (ER)

head (ERM)

n <- length(ERM)
B <- NULL

Rsqrs <- NULL

n2 <- 61



This results in the following output tables

constant beta
average 0.008 0.002
p.value 0.001 0.229

n mean R2
468 0.094

As we see, the CAPM is not supported in this sample.




The next example shows the analysis of a model where we add the
oil price to the market portfolio, and test whether the oil price is a
priced risk factor.



Here we find the following results:
First, just oil, without the market portfolio.

constant oil
average 0.010 0.003
p.value 0.00002  0.688

n mean R2
463 0.076

Then the two versions of the analysis adding oil to the market
portfolio.

constant beta oil
average 0.006 0.004 0.002
p.value 0.006 0.129 0.739

n mean R2
463 0.155




Industrial Production

constant  ind.prod
average 0.009 -0.002
p.value 0.0002 0.008

n mean R2
468 0.055
constant beta ip

average 0.005 0.005 -0.002
p.value 0.040 0.061  0.006

n mean R2
468 0.136




Inflation

constant dInfl
average 0.011 -0.0003
p.value 0.00005 0.273
n mean R2
468 0.070

constant beta dInfl
average 0.007 0.004 0.00001
p.value 0.002 0.125 0.969
n mean R2

468 0.151




Qual Spread

constant  QualSpread
average 0.009 0.027
p.value 0.001 0.624
n mean R2
468 0.054
constant beta QualSpread
average 0.008 0.001 0.016
p.value 0.0005 0.416 0.770
n mean R2

468 0.133




Term Spread

constant  TermSpread
average 0.007 0.059
p.value 0.005 0.585
n mean R2
468 0.059
constant beta TermSpread
average 0.006 0.001 0.028
p.value 0.004 0.389 0.801
n mean R2

468 0.146




Consumption

constant  dConsum
average 0.009 0.0004
p.value 0.0005 0.524
n mean R2
468 0.050
constant beta Consum
average 0.007 0.003  -0.0003
p.value 0.003 0.187 0.643
n mean R2

468 0.133




Chen Roll Ross approximation

To gather the above analysis into a single analysis, we look at The
formulation that Chen Roll and Ross focus on,

R = a+ bmpMP + bgei DEI + byi Ul + by UPR + bys UTS

where MP — montly change in industrial production

DEI — change in expected inflation

Ul — unexpected inflation

UPR - risk premium (quality spread)

UST - term structure (term spread)

These are the risk premia associated with the various factors.



We will instead of their two inflation measures merely use one
variable measuring inflation differences. We therefore estimate
using the following data

dIndProd — change in (log) industrial production

dInfl — change in inflation

QualSpread — Quality Spread

TermSpread — Term Spread

Summary stats

Table:
Statistic N Mean St. Dev. Min Max
eRm 619 0.005 0.045 —0.232 0.161
dindProd 619 0.002 0.007 —0.043 0.030
dinfl 619  0.00000 0.003 —0.014 0.018
QualSpread 619 2.000 0.859 0.100 6.280
TermSpread 619 1.529 1.249 —1.910 4.390
dRealCons 619 0.001 0.007 —0.040 0.034

dOilPrice 619 0.006 0.075 —0.396 0.853




Correlations

eRm
dIndProd
dinfl
QualSpread
TermSpread
dRealCons
dOilPrice

eRm
1
-0.002
-0.062
0.073
0.069
0.163
0.012

dIndProd

1
-0.014
-0.318

0.022
0.153
0.034

dinfl

-0.041

-0.031
-0.18

0.298

QualSpread TermSpread

0.464 1
-0.057 0.03
-0.103 -0.069

dRe




First we do the analysis without the market portfolio

constant  dIndProd dInfl QualSpread  TermSpread

average 0.008 -0.002 -0.0001 -0.023 0.080
p.value 0.0004 0.007 0.829 0.776 0.511
n mean R2

468 0.183




Then we add the market portfolio to this analysis

constant betai dindProd dinfl QualSpread  TermS;

average 0.006 0.002 -0.002 0.0001 -0.003 0.0:
p.value 0.010 0.255 0.017 0.761 0.967 0.81
n mean R2

468 0.235




Finally, add consumption as another potential explanatory variable

constant  betai  dIndProd dinfl QualSpread  Te

average 0.005 0.002 -0.002 0.0003 -0.023
p.value 0.016 0.259 0.052 0.321 0.765
n mean R2

468 0.254




and oil as a final alternative explanatory variable

constant betai dIndProd dinfl
average 0.006 0.004 -0.002 0.0001
p.value 0.007 0.144 0.002 0.693

QualSpread
-0.044
0.565

Te

n mean R2
463 0.258




Interestingly, Oil seems to “destroy” dIndProd as an explanatory
variable. Let us look at just those in isolation

constant beta IP oil
average 0.004 0.006 -0.002 0.001
p.value 0.069 0.037 0.008 0.813

n mean R2
463 0.181
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