
Bayesian econometrics – introduction

Alternative way of thinking about estimation.
Allows the econometrician to take into account other information
than what is in the data.
Bring extra information through a prior assumption about the
parameters.
Difference Bayesian analysis and classical , or frequentist analysis
partly philosophical



Classical estimation.

assume existence of true parameters θ.
Inference: Use data to get a best estimate (according to
optimization criterion)
Example: estimate the mean of set of normal iid N (µ, σ2)
observations
I µ

I σ

viewed as fixed, unknown numbers.
The estimator θ̂ is a random variable
Find the best estimator based on
I Consistency/Unbiasedness. θ̂ → θ

I Mean squared error E [(θ̂ − θ)(θ̂ − θ)]



Maximum likelihood estimation of normally distributed variables.
Suppose a variable xi has a normal distribution with mean µ and
variance σ2.
1. Determine the maximum likelihood estimator of µ.
2. Determine the maximum likelihood estimator of σ2.



Maximum likelihood estimation of normally distributed variables.
First recall the probability distribution for a normally distributed
varible xi

f (x ;µ, σ2) = 1√
2πσ2
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The likelihood function is

L(x ;µ, σ2) =
n∏
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1√
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We will instead of the likelihood function maximize the
log-likelihood function:
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Rewrite the log-likelihood function as
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We find the estimator from the first order conditions, first
estimating µ

∂`
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and then estimating σ2.

∂`

∂σ
=

n∑
i=1
− 1
σ
−

n∑
i=1

1
2

(
0− (xi − µ)22σ

σ4

)

0 =
n∑

i=1
− 1
σ

+
n∑

i=1

1
2

(
2(xi − µ)2σ

σ4

)

0 =
n∑

i=1
− 1
σ

+
n∑

i=1

(
(xi − µ)2

σ3

)

0 = −
n∑

i=1
1 +

n∑
i=1

(
(xi − µ)2

σ2

)

0 = −n +
n∑

i=1

(
(xi − µ)2

σ2

)

n = 1
σ2

n∑
i=1

(xi − µ)2

σ̂2
ml =

∑n
i=1(xi − µ)2

n



Bayesian Estimation
Bayesian analysis treats everything in terms of probability
distributions.
Even θ itself is viewed as a random variable.
Goal of Bayesian analysis:
Describe the analysts’ uncertainty about θ in terms of a probability
distribution.
Inference to a Bayesian analyst is to make probability statements.
Before observing the data, the analyst will summarize his
knowledge in the prior distribution

f (θ)

The joint probability density f (y , θ) describes the probability for
observing both the data y and the parameter θ

f (y , θ) = f (y |θ) · f (θ)



The goal of Bayesian analysis is to find a posterior density

f (θ|y),

The probability distribution of θ postulated after having observed
the data.
Use the definition of conditional probability

f (θ|y) = f (y , θ)
f (y)

f (θ|y) = f (y , θ)∫∞
−∞ f (y , θ)dθ

Using

f (y |θ) = f (y , θ)
f (θ)

→ f (y , θ) = f (y |θ)f (θ)
Bayes formula:

f (θ|y) = f (y |θ)f (θ)∫∞
−∞ f (y , θ)dθ



Example: Bayesian estimation of mean of normal

y ∼ N (µ, σ2)

A Bayesian summarizes prior assumptions about the distribution
into the parameters m and ν.

f (µ|σ) = 1√
2πσ2/ν

e−
1
2

(µ−m)2

σ2/ν

The parameter m is the best guess on the mean based on prior
knowledge, and the parameter ν describing the belief about
precision of the prior knowledge.



The sample distribution

f (y |µ, σ) =
n∏
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2πσ2
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)−T
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The goal is to produce the posterior distribution

f (µ|y ;σ)



The Bayesian estimator:

µ̂ =
(

ν

ν + T

)
m +

( T
ν + T

) ∑
t yt
T

– weighted average of
I prior m
I sample mean ȳ = 1

T
∑T

t=1 yt .
The lower the precision ν, the more weight is put on the data, and
the less on the prior.

Note that the limit when ν → 0 is the classical (sample average)
estimate.
→ improper or diffuse prior.



Bayesian analysis: discussion

Strength of Bayesian analysis: ability to account for prior
information.
However: Reliance on prior leads to a subjective part – What is the
source of the prior?
This subjectivity deterrent to the acceptance of Bayesian results.
However: classical analysis also using prior knowledge: The chosen
probability model.
Bayesian statisticans – The Jehovas Witnesses of Statistics.



Bayesian analysis: discussion

Still routes for Bayesian results to get published.
For example, ?, a way to ask if predictability matter.
Suppose an asset allocator is a Bayesian.
The predictability of monthly stock returns is small, by the usual
(classical) inference (i.e. not statistically significant.)
However, one can argue that the predictability is important if it is
used by the asset allocator.
Show that no matter what the prior, the historical data will still
lead to the posterior distribution changing.
→ the historical data matters for the asset allocator.
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