Liquidity and the Business Cycle

Randi Næs^a Johannes Skjeltorp^b Bernt Arne Ødegaard^{b,c}

September 2009

- a: Ministry of Trade and Industry
- b: Norges Bank
- c: University of Stavanger

Topic: Equity Liquidity and the Macroeconomy

This paper: Investigate links

- Equity Market Liquidity
- Macroeconomy i.e. Business Cycle.

We

- Show: Strong empirical link between (aggregate) stock market liquidity and the business cycle.
- Speculate: Are expectations about business cycle (consumption, investment) leading to portfolio rebalancing of individual investors?
- Show: Portfolio rebalancing of equity portfolios consistent with such a story.

Overview of presentation

- Equity market liquidity
 - What is it?
 - How to measure it?
- Why should liquidity
 - ► vary?
 - be related to the macroeconomy?
- US: What is the relationship between aggregate liquidity and the business cycle?
 - In sample autoregressions
 - Out of sample analysis
- US: Possible mechanism
 - Mechanism: Rebalancing of individual investor portfolios.
 - Evidence: US differences in crossection of stocks Small (bad liquidity) stocks most information
- Norway:
 - Confirming predictive power
 - Direct evidence on portfolio rebalancing.
- Conclusion

Defining liquidity

Maureen O'Hara: "...a liquid market is one in which buyers and sellers can trade into and out of positions quickly and without having large price effects."

Harris [2002], four interrelated liquidity dimensions:

- depth the volume that can be traded
- width the difference between the fundamental price and the transaction price
- immediacy the speed of trade execution
- resiliency how fast does the price move back to equilibrium after a large liquidity trade

Literature on liquidity

Starting point: Market Microstructure

 Implications of asymmetric information for price formation of single asset (stock)
This literature - do not aggregate (Unless degree of asymmetric information varies)

Evolving microstructure literature:

- Broader implications Asset pricing
- Common variation in (time series) of liquidity across
 - stocks [e.g. Chordia, Roll, and Subrahmanyam [2000], Hasbrouck and Seppi [2001], Huberman and Halka [2001]]
 - markets [e.g. Brockman, Chung and Pérignon (2006)]
 - *liquidity measures* [e.g. Korajczyk and Sadka [2007], Chollete, Naes, and Skjeltorp [2007, 2008]]

Time series variation in aggregate liqudity

Asset pricing implications

- \blacktriangleright commonality \rightarrow systematic (non diversifiable) risk factor
- empirical support for a liquidity risk premium [e.g. Pastor and Stambaugh [2003], Acharya and Pedersen [2005]...]

But:

Why should we observe common variation in market liquidity? *Theoretical models with endogenous market liquidity*

- Eisfeldt [2004]
 - market liquidity determined as a function of productivity
 - risky assets more attractive when productivity is high
- Gallmeyer, Hollifield, and Seppi [2008]: Demand Discovery, Saar [2006]
 - uncertainty about investors preferences and portfolios
 - link time variation in liquidity to equity risk premium

Why time varying liquidity?

Alternative way of phrasing question:

Can standard (consumption based) asset pricing theory help us? Consider intution of Merton [1973]:

Two portfolios, one used to hedge changes in investment opportunity set.

Implication: Time varying demand for assets depending on contribution to investment opportunity set.

Different stocks presumably different in contribution.

Result: Time variation in demand (for hedging purposes) of stocks.

Is contribution to investment opportunities related to liquidity?

Relevant empirics

Typical empirical question:

- Do shocks to macroeconomic variables affect liquidity of financial markets?
- US: Fujimoto [2003], Goyenko/Ukhov (2004) Scandinavia: Söderberg [2008]
 - monetary shocks (federal funds rate) forecast equity market liquidity
 - no effect from shocks in real variables

In this paper:

- Ask the opposite question
 - Are there effects from liquidity to macroeconomic variables?

Why should aggregate liquidity contain information about future macro?

- ► Rational expectations view ⇒ current prices are set on the basis of forecasts of relevant real variables
- Asset prices aggregate investors' views about economic fundamentals
 - Fama [1990], Schwert [1990], Beaudry and Portier [2006]: Current stock returns lead production growth
- Beber et al. [2008], Kaul and Kayacetin [2009] link aggregate order-flow (portfolio shifts) to future macro
 - order-flow aggregate investors views (or dispersed information) about macro fundamentals
 - trading decisions more informative than the trading consequences (price adjustments)

Measuring liquidity

Liquidity – "Soft" concept

 \rightarrow Many empirical measures, aspects of liquidity.

We use four such measures:

Transaction cost measures

- Relative spread: $RS = \frac{p_{ask} p_{bid}}{(p_{ask} + p_{bid})/2}$
- Lesmond/Ogden/Trzcinka [1999] measure (LOT)
 - implicit cost required for a firm's price to *not* move when the market moves
 - do not require ask/bid prices for estimation
- ▶ Roll [1984] estimate of implicit spread.

Price impact

- Amihud [2002] illiquidity ratio: ILR=|r|/VOLUME
 - How much does one unit of trade move the price?

Market-wide liquidity

 $\rightarrow\,$ cross sectional averages of these liquidity measures

Describing liquidity measures, US

Liquidity							Means si	ubperiods	5	
measure	mean	median	no secs	no obs	1947-59	1960-69	1970-79	1980-89	1990-99	2000-
RS	0.021	0.014	4248	146262	0.021	0.019		0.020	0.027	0.0
LOT	0.035	0.022	5177	340076	0.027	0.031	0.051	0.037	0.040	0.0
ILR	0.657	0.056	5178	340668	1.900	0.818	0.829	0.294	0.366	0.1
Roll	0.017	0.013	5141	174326	0.012	0.013	0.015	0.015	0.017	0.0

Correlations between liquidity measures, US

	RS	LOT	Roll
LOT	0.72		
Roll	0.40	0.62	
ILR	0.41	0.38	0.32

Macroeconomic Data

To proxy for the state of the real economy:

- ▶ real GDP (GDPR),
- unemployment rate (UE),
- real consumption (CONS)
- and real investment (INV).

Financial variables:

- Excess equity market return (R_m)
- Equity market volatility (Vola)
- Term spread (Term)
- Credit spread (Cred)

Data for stock market ownership for all investors at the Oslo Stock Exchange.

All ownership of stocks at the Exchange is registered in a single, government-controlled entity, the Central Securities Registry (VPS). Monthly observations of the equity holdings of the complete stock market (anonymized).

Liquidity measure: ILR - US (1947-2008)

Liquidity measure: Spread – Norway (1980–2008)

- Relative spread (left) --- Real GDP detrended (right)

Predicting US real economy with market illiquidity - ILR

Models: predictive regressions

$$y_{t+1} = \alpha + \beta L I Q_t + \gamma' \mathbf{X}_t + u_{t+1}$$
(1)

- y_{t+1} is the growth in the macro variable over quarter t+1,
- LIQ_t is the market illiquidity measured for quarter t
- X_t is a set of control variables observed at t.

Predicting macro with market illiquidity - only

Dependent variable (y_{t+1})	$\hat{\alpha}$	$\hat{eta}^{\it ILR}$	$\hat{\gamma}$	\bar{R}^2	
dGDPR	0.006 (7.58)	-0.013 (-5.37)	0.224 (3.68)	0.13	
dUE	0.003 (0.61)	0.074 (3.68)	0.300 (5.14)	0.13	
dCONSR	0.006 (7.07)	-0.006 (-3.33)	0.305 (4.46)	0.11	
dINV	0.006 (2.95)	-0.034 (-6.18)	0.265 (3.97)	0.15	

Predicting macro with market liquidity controlling for non-equity variables –ILR

	$\hat{\alpha}$	\hat{eta}^{LIQ}	$\hat{\gamma}^{y}$	$\hat{\gamma}^{\text{Term}}$	$\hat{\gamma}^{Cred}$	\bar{R}^2
dGDPR	0.005 (5.02)	-0.011 (-4.60)	0.214 (3.67)	0.001 (1.17)	-0.005 (-2.29)	0.159
dUE	0.015 (1.95)	0.057 (3.02)	0.303 (5.23)	-0.009 (-2.83)	0.042 (3.19)	0.175
dCONSR	0.004 (3.86)	-0.005 (-2.88)	0.305 (4.48)	0.001 (2.32)	-0.001 (-0.66)	0.133
dINV	0.001 (0.45)	-0.027 (-5.23)	0.247 (3.98)	0.004 (2.58)	-0.018 (-3.84)	0.228

Predicting macro with market liquidity - all control variables $-\mathsf{ILR}$

	\hat{lpha}	\hat{eta}^{LIQ}	$\hat{\gamma}^{y}$	$\hat{\gamma}^{\textit{Term}}$	$\hat{\gamma}^{Cred}$	$\hat{\gamma}^{Vola}$	$\hat{\gamma}^{Rm}$	\bar{R}^2
dGDPR	0.006 (5.72)	-0.008 (-3.90)	0.203 (3.57)	0.000 (0.92)	-0.005 (-2.38)	0.000 (-0.02)	0.016 (2.01)	0.16
dUE	0.006 (0.79)	0.021 (1.14)	0.307 (6.25)	-0.008 (-2.64)	0.048 (3.56)	-0.033 (-0.93)	-0.235 (-4.58)	0.213
dCONSR	0.005 (4.76)	-0.001 (-0.39)	0.302 (4.43)	0.001 (2.29)	-0.001 (-1.04)	0.002 (0.34)	0.026 (3.38)	0.171
dINV	0.003 (1.16)	-0.020 (-3.74)	0.243 (3.91)	0.004 (2.54)	-0.019 (-3.95)	0.007 (0.55)	0.048 (2.14)	0.238

Granger causality tests, US - liquidity - GDP

Which direction does links go? Granger causality tests (in bivariate VAR)

	Whole	First	Second		20 \	war cub n	orioda		
	sample	lidii	lidii		20 y	ear sub-p	Jenious		
	1947	1947-	1978-	1950-	1960-	1970-	1980-	1990	
	2008	1977	2008	1970	1980	1990	2000	200	
N (observations)	243	119	124	84	84	84	84	76	
NBER recessions	11	6	5	5	4	4	2	3	
(a) ILR measure									
H0: dGDPR→ dILR									
χ^2	4.08	1.66	3.13	3.84	3.56	3.35	2.83	2.6	
p-value	(0.13)	(0.44)	(0.21)	(0.15)	(0.17)	(0.19)	(0.24)	(0.20	
H0: dILR→ dGDPR									
χ^2	31.97**	19.01**	14.50**	16.42**	8.89**	11.70**	11.64**	11.85	
p-value	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.0	
								ID	

Market illiquidity around NBER recessions

Full sample period: 1947-2008

Market illiquidity and other financial variables around NBER recessions – Term spread

Market illiquidity and other financial variables around NBER recessions – Credit spread

Market illiquidity and other financial variables around NBER recessions – Market return

Market illiquidity and other financial variables around NBER recessions – Volatility

Out of sample evidence, US

Timing of information: Liquidity – realtime observations Macro variables – published with a lag, revised. We predict last vintage macroeconomic variables using variables observable at time when prediction is made.

Use liquidity as predicting variables.

Models are non-nested,

two statistics to compare out-of-sample performance:

- Mean-squared forecasting error (MSE) ratio
- Modified Diebold-Mariano (MDM) encompassing test [Harvey et al., 1998]

Comparing univariate forecasts

Out of sample tests - predicting GDP growth with different liquidity proxies

		Model 1					
Model 2	Statistic	ILR	LOT	Roll			
LOT	MSE_1/MSE_2 MDM	0.89 1.74*	-				
Roll	MSE_1/MSE_2 MDM	0.82 1.89*	0.91 0.47	-			
	MSE (x10 ³)	0.088	0.099	0.108			

Out of sample performance of illiquidity vs alternatives

Ask: Does adding ILR to a baseline model improve the out of sample performance?

Two test statistics:

1. Encompassing test (ENC-NEW) proposed by Clark and McCracken [2001].

The ENC-NEW test asks whether the restricted model (the model that do not include ILR), encompasses the unrestricted model that includes ILR. If the restricted model *does not* encompass the unrestricted model, that means that the additional predictor (ILR) in the larger, unrestricted, model improves forecast accuracy relative to the baseline.

 F-type test for equal MSE between two nested models proposed by McCracken [2007] termed MSE-F.

Nested model comparisons – Forecasting real GDP growth: Illiquidity (ILR) versus other financial variables

		1 qua	rter-ahea	d forecasts	2 quarters-ahead forecasts			
Unrestricted model	Restricted model	MSE <u>u</u> MSE _r	MSE-F	ENC-NEW	MSE <u>u</u> MSE _r	MSE-F	ENC-NEW	
ILR, TERM	TERM	0.917	20.95**	41.96**	0.927	18.09**	31.49**	
ILR, Rm	Rm	0.976	5.69**	14.39**	1.003	-0.59	12.33**	
ILR, CRED	CRED	1.000	0.02	18.73**	0.964	8.53**	22.86**	
ILR, Vola	Vola	0.889	28.76**	50.91**	0.895	26.88**	35.98**	

Nested model comparisons – Forecasting real GDP growth: Financial variables versus an autoregressive model for GDP growth

		1 qua	arter-ahead	d forecasts	2 qua	2 quarters-ahead forecasts			
Unrestricted model	Restricted model	MSE <u>u</u> MSE _r	MSE-F	ENC-NEW	<u>MSEu</u> MSEr	MSE-F	ENC-NEW		
ILR, dGDP	dGDP	0.849	41.16**	60.17**	0.803	56.36**	40.60**		
TERM, dGDP	dGDP	0.988	2.91	34.75**	0.866	35.44**	28.99**		
Rm, dGDP	dGDP	0.905	24.20**	45.54**	0.850	40.66**	30.91**		
CRED, dGDP	dGDP	0.838	44.63**	51.37**	0.850	40.54**	28.77**		
Vola, dGDP	dGDP	1.109	-22.77	9.92*	1.049	-10.81	1.26		

Conclusion of predictability estimates

- There is information about future macro in liquidity
 - Robust to which liquidity measure
 - Both in sample and out of sample
 - Information in liquidity is not subsumed by other measures used in the literature.

The differential information content of liquidity of small and large firms

Getting to cause of result:

Add assumption: Contribution of hedging portfolio related to firm size.

Is there any difference in information content of liquidity of small vs large stocks $% \left[{{\left[{{{\rm{s}}_{\rm{m}}} \right]}_{\rm{m}}} \right]_{\rm{m}}} \right]$

Comparing large and small stocks – ILR

	$\hat{\alpha}$	$\hat{\beta}_{S}^{LIQ}$	$\hat{\beta}_L^{LIQ}$	$\hat{\gamma}^{\mathit{Term}}$	$\hat{\gamma}^{\mathit{Cred}}$	$\hat{\gamma}^{\textit{Vola}}$	$\hat{\gamma}^{\textit{Rm}}$	\bar{R}^2
dGDPR	0.008	-0.008	0.003	0.000	-0.006	0.001	0.022	0.13
	(7.40)	(-3.66)	(1.01)	(0.74)	(-2.48)	(0.09)	(2.35)	
dUE	0.002	0.030	-0.042	-0.006	0.053	-0.029	-0.259	0.12
	(0.26)	(1.66)	(0.09)	(-1.78)	(3.61)	(-0.81)	(-4.00)	
dCONSR	0.008	-0.001	0.002	0.001	-0.002	0.000	0.028	0.08
	(8.32)	(-0.37)	(0.54)	(2.00)	(-1.19)	(0.10)	(3.17)	
dINV	0.006	-0.019	0.010	0.004	-0.022	0.015	0.065	0.18
	(2.10)	(-3.45)	(1.09)	(2.25)	(-4.03)	(1.13)	(2.51)	

Comparing large and small stocks - Granger causality tests

Liquidity	dGDF	PR→ LIQ	LIQ-→ dGDPR			
variable (LIQ)	χ^2	p-value	χ^2	p-value		
ILR ^s	4.34	0.23	10.33	0.02		
ILR ^L	6.86	0.08	1.32	0.72		
Roll ^S	0.67	0.72	6.44	0.04		
Roll ^L	0.19	0.91	5.60	0.06		
LOT ^S	3.19	0.07	9.84	0.00		
LOT ^L	0.20	0.65	0.03	0.87		

Comparing large and small stocks - turnover?

Is this related to movement in and out of small stocks? Add information about turnover.

Concluding – large vs small stocks

The predictive content of liquidity is coming from liquidity of small stocks.

Norway: Confirming the results on predictability

Dependent		RS			ILR				
variable (y _{t+1})	$\hat{\alpha}$	$\hat{\beta}^{\textit{RS}}$	$\hat{\gamma}^{y}$	\bar{R}^2	$\hat{\alpha}$	$\hat{eta}^{\it ILR}$	$\hat{\gamma}^{y}$	\bar{R}^2	
dGDPR	0.023 (5.28)	-0.397 (-4.03)	-0.243 (-4.03)	0.12	0.012 (5.99)	-0.006 (-3.04)	-0.225 (-3.69)	0.11	
dUE	-0.443 (-3.94)	11.387 (3.95)	-0.150 (-1.56)	0.12	-0.108 (-2.16)	0.141 (2.49)	-0.080 (-0.82)	0.06	
dCONS	0.016 (3.75)	-0.216 (-2.43)	-0.153 (-1.62)	0.03	0.011 (5.85)	-0.004 (-2.72)	-0.142 (-1.49)	0.04	
dINV	0.073 (3.79)	-1.686 (-4.01)	-0.415 (0.19)	0.19	0.021 (2.23)	-0.018 (-2.44)	-0.404 (-4.94)	0.16	

Norway – prediction

Dependent variable (y_{t+1})	$\hat{\alpha}$	\hat{eta}^{LIQ}	$\hat{\gamma}^{y}$	$\hat{\gamma}^{\mathit{Term}}$	$\hat{\gamma}^{\textit{Vola}}$	$\hat{\gamma}^{\textit{Rm}}$	\bar{R}^2
dGDPR	0.019 (3.11)	-0.361 (-3.43)	-0.259 (-4.25)	0.001 (1.64)	0.240 (0.62)	0.001 (0.08)	0.11
dUE	-0.358 (-3.20)	12.365 (3.05)	-0.166 (-1.39)	-0.007 (-0.57)	-14.022 (-1.00)	-0.183 (-0.77)	0.11
dCONS	0.018 (2.83)	-0.115 (-0.97)	-0.127 (-1.33)	0.000 (0.22)	-0.738 (-1.88)	-0.010 (-1.20)	0.03
dINV	0.052 (1.56)	-1.325 (-2.66)	-0.418 (-5.03)	0.003 (0.93)	0.547 (0.24)	0.044 (0.73)	0.18

Causality small vs large - Norway

	dGDF	PR→ LIQ	$LIQ \rightarrow dGDPR$		
Liquidity variable (LIQ)	χ^2	p-value	χ^2	p-value	
RS ^S	0.69	0.71	5.90	0.05	
RS ^L	1.93	0.37	0.61	0.73	
ILR ^S	0.15	0.67	4.92	0.03	
ILR ^L	1.63	0.20	0.66	0.42	

Norwegian ownership data

What can we ask with the Norwegian data?

Data: Can construct various measures of aggregate shifts in portfolio compositions.

Hypothesis: Portfolio shifts that reflects changes in expectations about macroeconomy.

What will happen:

- Some people will leave the stock market, into even more liquid assets (bank).
- Others will change their stock portfolio, shift to more liquid stocks (larger companies).

Can we detect such behavior, coinciding with changes in liquidity?

Describing annual changes in portfolio composition

Problem: How do we measure such aggregate movements? One way: From complete portfolios of individuals: Ask: Knowing portfolios see when one person

- leave market participation
- leave group of stocks (small firms) portfolio composition

Investor	Number of investors			Fraction of investors		
type	entering	leaving	net	entering	leaving	net
All	15220	11934	3286	24.1	18.5	5.6
Personal owners	13445	10087	3358	24.3	17.5	6.8
Foreign owners	862	1119	-256	33.7	35.3	-1.6
Financial owners	51	44	6	14.8	12.4	2.4
Nonfinancial owners	1013	838	175	24.4	19.6	4.8
State owners	14	11	3	20.8	15.1	5.7

Correlation liquidity and change in stock market participation

					Fi	rm size	quartil	es		
		A11		Q1					Q4	
	fii	rms	(small	lest firms)	Ģ	22	C	Q 3	(large	st firr
All owners	-0.07	(0.32)	-0.35	(0.00)	-0.10	(0.22)	-0.20	(0.07)	-0.11	(0.2
Personal owners	-0.02	(0.45)	-0.33	(0.01)	-0.09	(0.25)	-0.18	(0.09)	-0.08	(0.2
Foreign owners	-0.18	(0.09)	-0.30	(0.01)	-0.16	(0.12)	-0.25	(0.03)	-0.23	(0.0
Financial owners	-0.06	(0.33)	-0.11	(0.21)	0.01	(0.46)	-0.09	(0.25)	-0.08	(0.2
Nonfinancial owners	-0.16	(0.12)	-0.35	(0.00)	-0.11	(0.21)	-0.21	(0.06)	-0.20	(0.0
State owners	-0.06	(0.34)	-0.20	(0.07)	0.19	(0.08)	-0.10	(0.23)	-0.06	(0.3

Correlation change in liquidity and change in ownership concentration

		Firm Size Quartile				
Concentration	All	Q1	Q2	Q3	Q4	
measure	firms	(smallest firms)			(largest fir	
largest owner	0.07 (0.30)	0.13 (0.15)	0.13 (0.16)	0.09 (0.25)	-0.06 (0.3	
Herfindahl	0.09 (0.24)	0.20 (0.06)	0.10 (0.22)	0.18 (0.08)	-0.12 (0.1	
No owners	0.37 (0.00)	-0.09 (0.23)	-0.22 (0.04)	-0.27 (0.02)	0.37 (0.0	
Herfindahl (ex 3 largest)	0.18 (0.08)	0.29 (0.01)	0.23 (0.04)	-0.07 (0.29)	-0.05 (0.3	

Correlation change in liquidity and movement across owner types

		Firm Size Quartile					
Owner	All	Q1	Q2	Q3	Q4		
type	firms	(smallest firms)			(largest firms		
Financial fraction	-0.08 (0.26)	-0.15 (0.12)	-0.06 (0.34)	-0.04 (0.38)	0.22 (0.04)		
Individual fraction	-0.12 (0.18)	-0.14 (0.14)	-0.10 (0.21)	-0.06 (0.32)	0.24 (0.03)		
Nonfinancial fraction	-0.06 (0.31)	-0.13 (0.16)	-0.01 (0.48)	0.04 (0.37)	-0.18 (0.08)		
Foreign fraction	-0.05 (0.34)	0.10 (0.22)	0.06 (0.33)	-0.16 (0.11)	-0.17 (0.09)		
State fraction	0.05 (0.34)	-0.03 (0.42)	-0.14 (0.13)	0.01 (0.48)	0.06 (0.32)		

Conclude – Ownership results

- See changes in
 - stock market participation
 - stock portfolio compositions

coinciding with changes in aggregate measures

Summary of main results

Strong relation between equity market-liquidity and economic activity

 equity market liquidity contains information about current and future macro fundamentals

Where is information coming from?

Mainly from the liquidity of small firms

Variation in market liquidity related to changes in equity portfolio composition

 liquidity worsens simultaneously with investors trading/moving out of small stocks

Planned work ..

Additional markets

- Forecasting/"nowcasting"
 - Which liquidity measure has the best/most robust forecasting performance?
 - Common liquidity factor á la Chollete, Naes, and Skjeltorp [2007, 2008]

Extra Results etc

Describing liquidity measures, Norway

					means subperious					
Liquidity					1980-1989	1990-1999	2000-2008			
measure	mean	median	no secs	no obs						
RS	0.042	0.029	788	14942	0.041	0.046	0.040			
LOT	0.054	0.039	753	14852	0.055	0.064	0.049			
ILR	0.772	0.205	770	15092	1.149	0.875	0.452			
Roll	0.027	0.021	663	7209	0.027	0.026	0.026			

Manua automaticale

Correlations between liquidity measures, Norway

	RS	LOT	Roll
LOT	0.64		
Roll	0.65	0.51	
ILR	0.40	0.34	0.49

Liquidity measure: LOT - US (1947-2008)

Liquidity measure: Roll – US (1947–2008)

Liquidity measure: ILR- Norway (1980-2008)

Liquidity measure: LOT- Norway (1980-2008)

- LOT detrended (left) --- Real GDP detrended (right)

Correlations between liquidity and other variables - US

	Market variables								Macro variables		
	ILR	LOT	Roll	Term	Cred	Vola	Rm	dGDPR	dINV	dCON	
_											
Term	-0.17	-0.14	-0.04								
	(0.00)	(0.04)	(0.55)								
Cred	0.32	0.34	0.42	-0.21							
	(0.00)	(0.00)	(0.00)	(0.00)							
Vola	0.3 0	0.5 7	0.4 7	-0.1 5	0.42						
	(0.00)	(0.00)	(0.00)	(0.02)	(0.00)						
Rm	-0.5 3	-0.19	-0.35	0.3 3	-0.1 7	-0.33					
	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)					
	()	()	()	()	()	()					
dGDPR	-0.16	-0.10	-0.31	0.16	-0.27	0.01	0.09				
	(0.02)	(0.15)	(0.00)	(0.02)	(0.00)	(0.87)	(0.19)				
dINV	`-0.16	-0.1 7	`-0.4Ó	0.18	`-0.2 6	-0.07	0.09	0.73			
	(0.02)	(0.01)	(0.00)	(0.00)	(0.00)	(0.27)	(0.21)	(0.00)			
dCONSR	`-0.27́	`-0.1Ś	`-0.3 8́	`0.2 1	`-0.3 4	`-0.0Ś	0.16	0.6 8	0.57		
	(0.00)	(0.02)	(0.00)	(0.00)	(0.00)	(0.24)	(0.01)	(0.00)	(0.00)		
dUE	0.16	0.1 5	0.3 3	-0.10	0.2 8	Ò.08	- 0.04	-0.6Ś	`-0.6Ź	-0	
	(0.01)	(0.03)	(0.00)	(0.14)	(0.00)	(0.21)	(0.58)	(0.00)	(0.00)	(0.	
	` '	` '	` '	` '	` '	` '	` '	. ,	` '	II	

Universitetet i Stavanger Predicting macro with market illiquidity – only – LOT

Dependent				
variable (y_{t+1})	$\hat{\alpha}$	\hat{eta}^{LOT}	$\hat{\gamma}$	\bar{R}^2
dGDPR	0.007	-0.017	0.168	0.06
	(7.52)	(-2.77)	(2.58)	
dUE	0.003	0.129	0.261	0.10
	(0.47)	(3.14)	(4.42)	
dCONSR	0.006	-0.009	0.282	0.09
	(7.03)	(-1.74)	(3.85)	
dINV	0.007	-0.039	0.218	0.07
	(3.03)	(-2.56)	(3.20)	

Predicting macro with market illiquidity – only – Roll

Dependent				
variable (y_{t+1})	$\hat{\alpha}$	$\hat{eta}^{{\sf Roll}}$	$\hat{\gamma}$	\bar{R}^2
dGDPR	0.019	-0.813	0.133	0.10
	(5.96)	(-4.12)	(2.10)	
dUE	-0.074	5.206	0.236	0.12
	(-3.07)	(3.28)	(4.23)	
dCONSR	0.013	-0.437	0.264	0.11
	(4.22)	(-2.28)	(3.37)	
dINV	0.040	-2.228	0.169	0.12
	(4.29)	(-3.61)	(2.65)	

Predicted and realized macro fundamentals

GDP growth (dGDPR)

Market illiquidity around NBER recessions

Market illiquidity around NBER recessions

Second half:1978-2008

Comparing large and small stocks – LOT

 $\hat{\alpha} \quad \hat{\beta}_{\mathsf{S}}^{\mathsf{LIQ}} \quad \hat{\beta}_{\mathsf{I}}^{\mathsf{LIQ}} \quad \hat{\gamma}^{\mathsf{Term}} \quad \hat{\gamma}^{\mathsf{Cred}} \quad \hat{\gamma}^{\mathsf{Vola}} \quad \hat{\gamma}^{\mathsf{Rm}}$ \bar{R}^2 dGDPR 0.000 -0.007 0.008 0.008 -**0.014** 0.000 0.030 0.13 (7.34) (-2.15) (0.08) (0.62) (-3.04) (1.45) (3.67) dUE 0.004 0.008 -0.006 0.052 -0.098 -0.246 0.14 0.110 (0.43) (3.52) (0.22) (-1.58) (3.69) (-2.46) (-4.72) dCONSR 0.008 -0.005 -0.005 0.001 -0.002 0.005 0.026 0.09 (8.19) (-1.42) (-0.96) (1.93) (-1.04) (0.91) (3.95)dINV 0.007 -0.017 -0.009 0.003 -0.024 0.027 0.078 0.17 (2.20) (-1.22) (-0.76) (2.15) (-4.50) (1.85) (3.79)

Comparing large and small stocks - Roll

 $\hat{\beta}_{S}^{LIQ} \quad \hat{\beta}_{I}^{LIQ} \quad \hat{\gamma}^{Term} \quad \hat{\gamma}^{Cred} \quad \hat{\gamma}^{Vola} \quad \hat{\gamma}^{Rm}$ $\hat{\alpha}$ proxy (LIQ) 0.017 -0.303 -0.272 0.001 -0.005 0.006 0.023 0. dGDPR (5.11) (-2.37) (-0.98) (1.59) (-2.47) (1.12) (2.83) dUE -0.050 **2.402** 0.859 -0.010 0.045 -0.073 -0.204 0. (-1.73) **(2.70)** (0.35) (-2.82) (3.22) (-1.75) (-3.92) dCONSR 0.005 0.014 **-0.300** -0.010 0.001 -0.001 0.023 0. (4.71) (-2.51) (-0.03) (3.02) (-0.53) (0.94)(3.42)dINV 0.033 -1.063 -0.625 0.005 -0.020 0.034 0.059 0. (3.93) (-2.86) (-0.68) (3.26) (-4.10) (2.68) (2.84)

Norway – prediction

Dependent variable (y_{t+1})	$\hat{\alpha}$	\hat{eta}^{LIQ}	$\hat{\gamma}^{y}$	$\hat{\gamma}^{ {\it Term}}$	$\hat{\gamma}^{\textit{Vola}}$	$\hat{\gamma}^{\textit{Rm}}$	\bar{R}^2
dGDPR	0.010 (2.36)	-0.006 (-2.26)	-0.231 (-3.42)	0.001 (0.85)	0.165 (0.45)	0.007 (0.67)	0.10
dUE	-0.012 (-0.14)	0.145 (2.22)	-0.085 (-0.78)	-0.007 (-0.45)	-10.323 (-1.01)	-0.335 (-1.39)	0.05
dCONS	0.016 (3.71)	-0.003 (-1.68)	-0.128 (-1.32)	0.000 (-0.02)	-0.732 (-1.85)	-0.007 (-0.92)	0.04
dINV	0.011 (0.50)	-0.009 (-0.80)	-0.404 (-4.96)	0.004 (1.06)	-0.071 (-0.03)	0.057 (0.88)	0.16

- Viral A Acharya and Lasse Heje Pedersen. Asset pricing with liquidity risk. *Journal of Financial Economics*, 77:375–410, 2005.
- Yakov Amihud. Illiquidity and stock returns: Cross-section and time-series effects. *Journal of Financial Markets*, 5:31–56, 2002.
- Paul Beaudry and Franck Portier. Stock prices, news, and economic fluctuations. *American Economic Review*, 96(4): 1293–1307, September 2006.
- Allessandro Beber, Michael W Brandt, and Kenneth A Kavajanez. What does equity sector orderflow tell us about the economy? Working Paper, June 2008.
- Loran Chollete, Randi Naes, and Johannes A. Skjeltorp. What captures liquidity risk? order based versus trade based liquidity measures. Working Paper, Norges Bank, 2007.
- Loran Chollete, Randi Naes, and Johannes A Skjeltorp. The risk components of liquidity. Working Paper, Norges Bank, 2008.
- Tarun Chordia, Richard Roll, and Avanidhar Subrahmanyam. Commonality in liquidity. *Journal of Financial Economics*, 56: 3–28, 2000.

- Todd E. Clark and Michael W. McCracken. Tests of equal forecast accuracy and encompassing for nested models. *Journal of Econometrics*, 105:85–110, 2001.
- Andrea L Eisfeldt. Endogenous liquidity in asset markets. *Journal* of *Finance*, 59(1):1–30, February 2004.
- Eugene F. Fama. Stock returns, expected returns, and real activity. *The Journal of Finance*, 45:1089–1108, 1990.
- Akiko Fujimoto. Macroeconomic sources of systematic liquidity. Working Paper, Yale University, October 2003.
- Michael Gallmeyer, Burton Hollifield, and Duane Seppi. Demand discovery and asset pricing. Working Paper, Carnegie Mellon University, February 2008.
- Lawrence Harris. *Trading and Exchanges. Market Microstructure for Practitioners.* Oxford University Press, 2002.
- David I Harvey, Stephen J Leybourne, and Paul Newbold. Tests for forecasting encompassing. *Journal of Business and Economic Statistics*, 16:254–259, 1998.

Joel Hasbrouck and Duane Seppi. Common factors in prices, order

flows, and liquidity. *Journal of Financial Economics*, 59:383–411, 2001.

- G Huberman and D Halka. Systematic liquidity. *Journal of Financial Research*, XXIV(2):161–178, 2001.
- Aditya Kaul and Volkan Kayacetin. Forecasting economic fundamentals and stock returns with equity market order flows: Macro information in a micro measure? Working Paper, February 2009.
- Robert A Korajczyk and Ronnie Sadka. Pricing the commonality across alternative measures of liquidity. *Journal of Financial Economics*, 2007. forthcoming.
- David A Lesmond, Joseph P Ogden, and Charles A Trzcinka. A new estimate of transaction costs. *Review of Financial Studies*, 12:1113–1141, 1999.
- Michael W. McCracken. Asymptotics for out-of-sample tests for granger causality. *Journal of Econometrics*, 140:719–752, 2007.

Robert C Merton. An intertemporal capital asset pricing model. *Econometrica*, 41:867–888, September 1973.

- Lubos Pastor and Robert F Stambaugh. Liquidity risk and price discovery. *Journal of Political Economy*, 111(3):642–685, 2003.
- Richard Roll. A simple implicit measure of the effective bid-ask spread in an efficient market. *The Journal of Finance*, 39(4): 1127–1139, September 1984.
- Gideon Saar. Systematic liquidity and learning about the risk premium. Working Paper, Cornell University, August 2006.
- G William Schwert. Stock returns and real activity. *The Journal of Finance*, 45:1237–1257, September 1990.
- Jonas Söderberg. Do macroeconomic variables forecast changes in liquidity? an out-of-sample study on the order-driven stock markets in Scandinavia. Working Paper, Copenhagen Business Schoool, May 2008.

